Introduction to Maxwell's Equations

Exercise 2

Let $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ be Hilbert spaces and let

$$
\mathrm{A}_{1}: D\left(\mathrm{~A}_{1}\right) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}, \quad \mathrm{~A}_{2}: D\left(\mathrm{~A}_{2}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{3}
$$

be lddc operators with adjoints

$$
\mathrm{A}_{1}^{*}: D\left(\mathrm{~A}_{1}^{*}\right) \subset \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}, \quad \mathrm{~A}_{2}^{*}: D\left(\mathrm{~A}_{2}^{*}\right) \subset \mathrm{H}_{3} \rightarrow \mathrm{H}_{2},
$$

which are then also lddc. The corresponding reduced operators are

$$
\mathcal{A}_{1}: D\left(\mathcal{A}_{1}\right):=D\left(\mathrm{~A}_{1}\right) \cap \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \subset \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{1}\right)}, \quad \mathcal{A}_{2}: D\left(\mathcal{A}_{2}\right):=D\left(\mathrm{~A}_{2}\right) \cap \overline{R\left(\mathrm{~A}_{2}^{*}\right)} \subset \overline{R\left(\mathrm{~A}_{2}^{*}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{2}\right)}
$$

with adjoints

$$
\mathcal{A}_{1}^{*}: D\left(\mathcal{A}_{1}^{*}\right):=D\left(\mathrm{~A}_{1}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{1}\right)} \subset \overline{R\left(\mathrm{~A}_{1}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{1}^{*}\right)}, \quad \mathcal{A}_{2}^{*}: D\left(\mathcal{A}_{2}^{*}\right):=D\left(\mathrm{~A}_{2}^{*}\right) \cap \overline{R\left(\mathrm{~A}_{2}\right)} \subset \overline{R\left(\mathrm{~A}_{2}\right)} \rightarrow \overline{R\left(\mathrm{~A}_{2}^{*}\right)} .
$$

All operators are lddc and $\left(\mathrm{A}_{1}, \mathrm{~A}_{1}^{*}\right),\left(\mathrm{A}_{2}, \mathrm{~A}_{2}^{*}\right)$ as well as $\left(\mathcal{A}_{1}, \mathcal{A}_{1}^{*}\right),\left(\mathcal{A}_{2}, \mathcal{A}_{2}^{*}\right)$ define dual pairs. Moreover, let the sequence or complex property be satisfied, that is

$$
\mathrm{A}_{2} \mathrm{~A}_{1}=0 \quad, \text { i.e., } \quad R\left(\mathrm{~A}_{1}\right) \subset N\left(\mathrm{~A}_{2}\right) .
$$

Note that then also $\mathrm{A}_{1}^{*} \mathrm{~A}_{2}^{*}=0$, i.e., $R\left(\mathrm{~A}_{2}^{*}\right) \subset N\left(\mathrm{~A}_{1}^{*}\right)$ holds. In other words, we have the following sequences or complexes:

$$
\begin{aligned}
& D\left(\mathrm{~A}_{1}\right) \xrightarrow{\mathrm{A}_{1}} D\left(\mathrm{~A}_{2}\right) \xrightarrow{\mathrm{A}_{2}} \mathrm{H}_{3} \\
& \mathrm{H}_{1} \stackrel{\mathrm{~A}_{1}^{*}}{\longleftarrow} D\left(\mathrm{~A}_{1}^{*}\right) \stackrel{\mathrm{A}_{2}^{*}}{\longleftrightarrow} D\left(\mathrm{~A}_{2}^{*}\right)
\end{aligned}
$$

By the projection theorem it holds

$$
\begin{aligned}
\mathrm{H}_{1} & =N\left(\mathrm{~A}_{1}\right) \oplus \mathrm{H}_{1} \overline{R\left(\mathrm{~A}_{1}^{*}\right)} \\
\mathrm{H}_{2} & =N\left(\mathrm{~A}_{2}\right) \oplus{ }_{\mathrm{H}_{2}} \overline{R\left(\mathrm{~A}_{2}^{*}\right)}=\overline{R\left(\mathrm{~A}_{1}\right)} \oplus_{\mathrm{H}_{2}} N\left(\mathrm{~A}_{1}^{*}\right), \\
\mathrm{H}_{3} & =\overline{R\left(\mathrm{~A}_{2}\right)} \oplus_{\mathrm{H}_{3}} N\left(\mathrm{~A}_{2}^{*}\right)
\end{aligned}
$$

Problem 1

Show

$$
\begin{array}{ll}
D\left(\mathrm{~A}_{1}\right)=N\left(\mathrm{~A}_{1}\right) \oplus_{\mathrm{H}_{1}} D\left(\mathcal{A}_{1}\right), \\
D\left(\mathrm{~A}_{2}\right)=N\left(\mathrm{~A}_{2}\right) \oplus_{\mathrm{H}_{2}} D\left(\mathcal{A}_{2}\right), \\
D\left(\mathrm{~A}_{2}^{*}\right)=D\left(\mathcal{A}_{2}^{*}\right) \oplus_{\mathrm{H}_{3}} N\left(\mathrm{~A}_{2}^{*}\right) & D\left(\mathrm{~A}_{1}^{*}\right)=D\left(\mathcal{A}_{1}^{*}\right) \oplus_{\mathrm{H}_{2}} N\left(\mathrm{~A}_{1}^{*}\right),
\end{array}
$$

and hence $R\left(\mathrm{~A}_{1}\right)=R\left(\mathcal{A}_{1}\right), R\left(\mathrm{~A}_{2}\right)=R\left(\mathcal{A}_{2}\right), R\left(\mathrm{~A}_{1}^{*}\right)=R\left(\mathcal{A}_{1}^{*}\right), R\left(\mathrm{~A}_{2}^{*}\right)=R\left(\mathcal{A}_{2}^{*}\right)$.

Problem 2

Show the refined Helmholtz type decompositions

$$
\begin{array}{rlrl}
\mathrm{H}_{2} & =\overline{R\left(\mathrm{~A}_{1}\right)} \oplus_{\mathrm{H}_{2}} K_{2} \oplus_{\mathrm{H}_{2}} \overline{R\left(\mathrm{~A}_{2}^{*}\right)}, & :=N\left(\mathrm{~A}_{2}\right) \cap N\left(\mathrm{~A}_{1}^{*}\right), \\
N\left(\mathrm{~A}_{2}\right) & =\overline{R\left(\mathrm{~A}_{1}\right)} \oplus_{\mathrm{H}_{2}} K_{2}, & \overline{R\left(\mathcal{A}_{2}^{*}\right)}=\overline{R\left(\mathrm{~A}_{1}^{*}\right)} & =K_{2} \oplus_{\mathrm{H}_{2}} \overline{R\left(\mathrm{~A}_{2}^{*}\right)} \\
\overline{R\left(\mathcal{A}_{1}\right)}= & =N\left(\mathrm{~A}_{1}^{*}\right) \ominus_{\mathrm{H}_{2}} K_{2}, \\
\overline{R\left(\mathrm{~A}_{1}\right)} & =N\left(\mathrm{~A}_{2}\right) \ominus_{\mathrm{H}_{2}} K_{2}, & D\left(\mathrm{~A}_{1}^{*}\right) & =D\left(\mathcal{A}_{1}^{*}\right) \oplus_{\mathrm{H}_{2}} K_{2} \oplus_{\mathrm{H}_{2}} \overline{R\left(\mathrm{~A}_{2}^{*}\right)}, \\
D\left(\mathrm{~A}_{2}\right) & =\overline{R\left(\mathrm{~A}_{1}\right)} \oplus_{\mathrm{H}_{2}} K_{2} \oplus_{\mathrm{H}_{2}} D\left(\mathcal{A}_{2}\right), & D_{2} & :=D\left(\mathrm{~A}_{2}\right) \cap D\left(\mathrm{~A}_{1}^{*}\right) .
\end{array}
$$

Problem 3

The embeddings $D\left(\mathcal{A}_{1}\right) \hookrightarrow \mathrm{H}_{1}, D\left(\mathcal{A}_{2}\right) \hookrightarrow \mathrm{H}_{2}$, and $K_{2} \hookrightarrow \mathrm{H}_{2}$ are compact, if and only if the embedding $D_{2} \hookrightarrow \mathrm{H}_{2}$ is compact. In this case, K_{2} has finite dimension and all ranges and complexes are closed.

Problem 4

Let $R\left(\mathrm{~A}_{1}\right)$ and $R\left(\mathrm{~A}_{2}\right)$ be closed and let K_{2} be finite dimensional, which is satisfied, if, e.g., $D_{2} \hookrightarrow \mathrm{H}_{2}$ is compact. Show that the linear first order system

$$
\begin{align*}
\mathrm{A}_{2} x & =f, \\
\mathrm{~A}_{1}^{*} x & =g, \tag{1}\\
\pi_{2} x & =k
\end{align*}
$$

is uniquely solvable in D_{2}, if and only if $f \in R\left(\mathrm{~A}_{2}\right), g \in R\left(\mathrm{~A}_{1}^{*}\right)$, and $k \in K_{2}$. Moreover, the unique solution $x \in D_{2}$ depends continuously on the data, i.e., $|x|_{\mathrm{H}_{2}} \leq c_{\mathrm{A}_{2}}|f|_{\mathrm{H}_{3}}+c_{\mathrm{A}_{1}}|g|_{\mathrm{H}_{1}}+|k|_{\mathrm{H}_{2}}$.

Problem 5

Find variational formulations to compute the (partial) solutions of (1).

Problem 6

Let $R\left(\mathrm{~A}_{1}\right)$ and $R\left(\mathrm{~A}_{2}\right)$ be closed and let K_{2} be finite dimensional, which is satisfied, if, e.g., $D_{2} \hookrightarrow \mathrm{H}_{2}$ is compact. Show that the linear second order system

$$
\begin{align*}
\mathrm{A}_{2}^{*} \mathrm{~A}_{2} x & =f, \\
\mathrm{~A}_{1}^{*} x & =g \tag{2}\\
\pi_{2} x & =k .
\end{align*}
$$

is uniquely solvable in

$$
\tilde{D}_{2}:=D\left(\mathrm{~A}_{2}^{*} \mathrm{~A}_{2}\right) \cap D\left(\mathrm{~A}_{1}^{*}\right)=\left\{\xi \in D_{2}: \mathrm{A}_{2} \xi \in D\left(\mathrm{~A}_{2}^{*}\right)\right\}
$$

if and only if $f \in R\left(\mathrm{~A}_{2}^{*}\right), g \in R\left(\mathrm{~A}_{1}^{*}\right)$, and $k \in K_{2}$. Moreover, the unique solution $x \in \tilde{D}_{2}$ depends continuously on the data, i.e., $|x|_{\mathrm{H}_{2}} \leq c_{\mathrm{A}_{2}}^{2}|f|_{\mathrm{H}_{2}}+c_{\mathrm{A}_{1}}|g|_{\mathrm{H}_{1}}+|k|_{\mathrm{H}_{2}}$.

Problem 7
Find variational formulations to compute the (partial) solutions of (2).

