Dirk Pauly

Introduction to Maxwell's Equations Exercise 2

Let H_1 , H_2 , H_3 be Hilbert spaces and let

$$\mathbf{A}_1: D(\mathbf{A}_1) \subset \mathsf{H}_1 \to \mathsf{H}_2, \quad \mathbf{A}_2: D(\mathbf{A}_2) \subset \mathsf{H}_2 \to \mathsf{H}_3$$

be lddc operators with adjoints

$$\mathbf{A}_1^*: D(\mathbf{A}_1^*) \subset \mathsf{H}_2 \to \mathsf{H}_1, \quad \mathbf{A}_2^*: D(\mathbf{A}_2^*) \subset \mathsf{H}_3 \to \mathsf{H}_2,$$

which are then also lddc. The corresponding reduced operators are

$$\mathcal{A}_1: D(\mathcal{A}_1) := D(\mathcal{A}_1) \cap \overline{R(\mathcal{A}_1^*)} \subset \overline{R(\mathcal{A}_1^*)} \to \overline{R(\mathcal{A}_1)}, \quad \mathcal{A}_2: D(\mathcal{A}_2) := D(\mathcal{A}_2) \cap \overline{R(\mathcal{A}_2^*)} \subset \overline{R(\mathcal{A}_2^*)} \to \overline{R(\mathcal{A}_2)}$$

with adjoints

$$\mathcal{A}_1^*: D(\mathcal{A}_1^*) := D(A_1^*) \cap \overline{R(A_1)} \subset \overline{R(A_1)} \to \overline{R(A_1^*)}, \quad \mathcal{A}_2^*: D(\mathcal{A}_2^*) := D(A_2^*) \cap \overline{R(A_2)} \subset \overline{R(A_2)} \to \overline{R(A_2^*)}.$$

All operators are lddc and (A_1, A_1^*) , (A_2, A_2^*) as well as $(\mathcal{A}_1, \mathcal{A}_1^*)$, $(\mathcal{A}_2, \mathcal{A}_2^*)$ define dual pairs. Moreover, let the sequence or complex property be satisfied, that is

$$A_2 A_1 = 0$$
, i.e., $R(A_1) \subset N(A_2)$.

Note that then also $A_1^*A_2^* = 0$, i.e., $R(A_2^*) \subset N(A_1^*)$ holds. In other words, we have the following sequences or complexes:

$$D(\mathbf{A}_1) \xrightarrow{\mathbf{A}_1} D(\mathbf{A}_2) \xrightarrow{\mathbf{A}_2} \mathbf{H}_3$$
$$\mathbf{H}_1 \xleftarrow{\mathbf{A}_1^*} D(\mathbf{A}_1^*) \xleftarrow{\mathbf{A}_2^*} D(\mathbf{A}_2^*)$$

By the projection theorem it holds

$$\begin{split} \mathsf{H}_1 &= N(\mathsf{A}_1) \oplus_{\mathsf{H}_1} \overline{R(\mathsf{A}_1^*)}, \\ \mathsf{H}_2 &= N(\mathsf{A}_2) \oplus_{\mathsf{H}_2} \overline{R(\mathsf{A}_2^*)} = \overline{R(\mathsf{A}_1)} \oplus_{\mathsf{H}_2} N(\mathsf{A}_1^*), \\ \mathsf{H}_3 &= \overline{R(\mathsf{A}_2)} \oplus_{\mathsf{H}_3} N(\mathsf{A}_2^*). \end{split}$$

Problem 1

Show

$$D(A_1) = N(A_1) \oplus_{H_1} D(A_1),$$

$$D(A_2) = N(A_2) \oplus_{H_2} D(A_2),$$

$$D(A_2^*) = D(A_2^*) \oplus_{H_3} N(A_2^*)$$

$$D(A_1^*) = D(A_1^*) \oplus_{H_2} N(A_1^*),$$

and hence $R(A_1) = R(A_1), R(A_2) = R(A_2), R(A_1^*) = R(A_1^*), R(A_2^*) = R(A_2^*).$

Problem 2

Show the refined Helmholtz type decompositions

$$\begin{split} \mathsf{H}_2 &= \overline{R(\mathsf{A}_1)} \oplus_{\mathsf{H}_2} K_2 \oplus_{\mathsf{H}_2} \overline{R(\mathsf{A}_2^*)}, & K_2 := N(\mathsf{A}_2) \cap N(\mathsf{A}_1^*), \\ N(\mathsf{A}_2) &= \overline{R(\mathsf{A}_1)} \oplus_{\mathsf{H}_2} K_2, & N(\mathsf{A}_1^*) = K_2 \oplus_{\mathsf{H}_2} \overline{R(\mathsf{A}_2^*)}, \\ \overline{R(\mathcal{A}_1)} &= \overline{R(\mathsf{A}_1)} = N(\mathsf{A}_2) \oplus_{\mathsf{H}_2} K_2, & \overline{R(\mathcal{A}_2^*)} = \overline{R(\mathsf{A}_2^*)} = N(\mathsf{A}_1^*) \oplus_{\mathsf{H}_2} K_2, \\ D(\mathsf{A}_2) &= \overline{R(\mathsf{A}_1)} \oplus_{\mathsf{H}_2} K_2 \oplus_{\mathsf{H}_2} D(\mathcal{A}_2), & D(\mathsf{A}_1^*) = D(\mathcal{A}_1^*) \oplus_{\mathsf{H}_2} K_2 \oplus_{\mathsf{H}_2} \overline{R(\mathsf{A}_2^*)}, \\ D_2 &= D(\mathcal{A}_1^*) \oplus_{\mathsf{H}_2} K_2 \oplus_{\mathsf{H}_2} D(\mathcal{A}_2), & D_2 := D(\mathsf{A}_2) \cap D(\mathsf{A}_1^*). \end{split}$$

Problem 3

The embeddings $D(\mathcal{A}_1) \hookrightarrow \mathsf{H}_1$, $D(\mathcal{A}_2) \hookrightarrow \mathsf{H}_2$, and $K_2 \hookrightarrow \mathsf{H}_2$ are compact, if and only if the embedding $D_2 \hookrightarrow \mathsf{H}_2$ is compact. In this case, K_2 has finite dimension and all ranges and complexes are closed.

Problem 4

Let $R(A_1)$ and $R(A_2)$ be closed and let K_2 be finite dimensional, which is satisfied, if, e.g., $D_2 \hookrightarrow H_2$ is compact. Show that the linear first order system

$$A_2 x = f,$$

$$A_1^* x = g,$$

$$\pi_2 x = k.$$
(1)

is uniquely solvable in D_2 , if and only if $f \in R(A_2)$, $g \in R(A_1^*)$, and $k \in K_2$. Moreover, the unique solution $x \in D_2$ depends continuously on the data, i.e., $|x|_{H_2} \leq c_{A_2}|f|_{H_3} + c_{A_1}|g|_{H_1} + |k|_{H_2}$.

1

Problem 5

Find variational formulations to compute the (partial) solutions of (1).

Problem 6

Let $R(A_1)$ and $R(A_2)$ be closed and let K_2 be finite dimensional, which is satisfied, if, e.g., $D_2 \hookrightarrow H_2$ is compact. Show that the linear second order system

$$A_{2}^{*} A_{2} x = f, A_{1}^{*} x = g, \pi_{2} x = k.$$
(2)

is uniquely solvable in

$$\tilde{D}_2 := D(A_2^*A_2) \cap D(A_1^*) = \{\xi \in D_2 : A_2 \xi \in D(A_2^*)\},\$$

if and only if $f \in R(A_2^*)$, $g \in R(A_1^*)$, and $k \in K_2$. Moreover, the unique solution $x \in \tilde{D}_2$ depends continuously on the data, i.e., $|x|_{H_2} \leq c_{A_2}^2 |f|_{H_2} + c_{A_1} |g|_{H_1} + |k|_{H_2}$.

Problem 7

Find variational formulations to compute the (partial) solutions of (2).