WEB-SPLINES

concept by K. Höllig, U. Reif, J. Wipper

Michael Hauer
2017/01/20
For the course - Spezialvorlesung: Isogeometric Analysis

Classification and chronology

- attempt to unify CAD/CAM and FEM
- meshless finite element technique
- within the standard Ritz-Galerkin framework

■ introduced in 2001 by Höllig, Reif and Wipper (compare IgA by Hughes in 2005)

Outline

Definition

- Weighted splines
- Extended splines

■ WEB-splines

Approximation properties and stability

Numerical examples

Further remarks

DEFINITION

DEFINITION

WEIGHTED SPLINES

Meshless method

FEM-mesh
tensor-product
basis functions

Meshless method

FEM-mesh
tensor-product
basis functions

How to fulfill Dirichlet boundary conditions?

Weight functions

■ use tensor product B-splines b_{k}
■ multiply basis functions b_{k} by a smoothed version ω of the distance function to $\Gamma_{D} \subset \partial D$

- obtain subspace

$$
\operatorname{span}\left\{\omega b_{k}: D \cap \operatorname{supp}\left(b_{k}\right) \neq \emptyset\right\}
$$

which confirms to the BC

- IDEA: Kantorowitsch and Krylow, 1956

How to choose appropriate weight functions?

assume boundary is defined in terms of simple algebraic equations
use R-Function Method (RFM) by Rvachev et al. $(1995,2000)$

Set operation	Corresponding R-function
Complement: D^{c}	$r_{c}(\omega)=-\omega$
Intersection: $D_{1} \cap D_{2}$	$r_{\cap}\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2}-\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}$
Union: $D_{1} \cup D_{2}$	$r_{\cup}\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2}+\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}$

\rightarrow Example on the blackboard

Weight functions

■ other weight functions might be possible

- R-functions are still complicated
- one does not need to compute the explicite form

■ for this application some kind of plateau would be useful

Weighted B-splines

Problem with stability:
Due to possible small areas near the boundary, coefficients in these areas might become large \rightarrow system ill conditioned

DEFINITION

EXTENDED SPLINES

Notation

b_{k}	\ldots	B-splines
λ_{k}	\ldots	dual functionals for b_{k}
B_{k}	\ldots	extended B-splines
Q_{k}	\ldots	grid cells in support of b_{k}
$K=\left\{k: \Omega \cap \operatorname{supp}\left(b_{k}\right) \neq \emptyset\right\}$	\ldots	set of indices of basis fcts.
$I=\left\{i: b_{i}\right.$ contains an inner grid cell $\}$	\ldots	set of inner indices
$J=K \backslash I$	\ldots	set of outer indices
$I(j)=\left\{i \in I: Q_{j} \subset \operatorname{supp}\left(b_{i}\right)\right\}$	\ldots	related inner indices
$J(i)=\{j \in J: i \in I(j)\}$	\ldots	related outer indices
$p_{i, j}$	\ldots	polynomial which agrees

Stability problem - Example in 1D

Extended B-splines - 2D basis supports

Relevant biquadratic B-splines for a domain D

Extended B-splines (eb-splines)

overcome stability problem by suitably joining outer B-splines to inner B-splines

Definition

For $i \in I, j \in J(i)$ we define the extension coefficients

$$
e_{i, j}:=\lambda_{j} p_{i, j}
$$

Then the extended B-splines are

$$
B_{i}:=b_{i}+\sum_{j \in J(i)} e_{i, j} b_{j}, \quad i \in I
$$

How do we get the extension coefficients?

- uniform grid: via Lagrange interpolation

$$
e_{i, j}=\prod_{\substack{\nu=0 \\ \ell+\nu \neq i}}^{n} \frac{j-\ell-\nu}{i-\ell-\nu}
$$

■ nonuniform grid: more difficult
\square generate $p_{i, j}$ in Taylor form
\square expand at an arbitrary point $\tau_{j} \in Q_{j}$
\square apply dual funcional (de Boor and Fix)

$$
\lambda_{k} f=\sum_{\ell=0}^{n}(-1)^{n-\ell} \psi_{k}^{(n-\ell)}\left(\tau_{k}\right) f^{(\ell)}\left(\tau_{k}\right), \quad \psi_{k}^{(n-\ell)}(x)=\frac{1}{n!} \prod_{\ell=1}^{n}\left(t_{k+\ell}-x\right)
$$

Extended B-splines (eb-splines)

One can show, that eb-splines inherit the properties

- locality
- boundedness
- existence of dual functionals
- polynomial precision
from standard B-splines which are crucial for approximation purposes.

DEFINITION

WEB-SPLINES

Combine wb-splines and eb-splines

Definition

For $i \in I, j \in J(i)$ let the extension coefficients $e_{i, j}$ be as before. Further let ω be a positive weight function, smooth on D and equivalent to some power of the boundary distance function

$$
\omega(x) \asymp \operatorname{dist}(x, \partial D)^{r} .
$$

Then the extended B -splines are

$$
B_{i}:=\frac{\omega}{\omega\left(x_{i}\right)}\left(b_{i}+\sum_{j \in J(i)} e_{i, j} b_{j}\right), \quad i \in I,
$$

where x_{i} is the center of the interior grid cell Q_{i}.

Different types

uniform grid, nonuniform grid, hierarchical bases (Kraft), ...

APPROXIMATION PROPERTIES AND STABILITY

Some useful remarks

■ extension coefficients are uniformly bounded

$$
\left|e_{i, j}\right| \preceq 1
$$

■ support of web-splines is larger BUT only a small strip of inner cells is effected, consequently

$$
\operatorname{supp}\left(B_{i}\right) \preceq h
$$

- web-splines are linearly independent and have the dual functional

$$
\Lambda_{k}=\frac{\omega\left(x_{k}\right)}{\omega} \lambda_{k}, \quad k \in I
$$

Stability

web-splines and the dual functional are uniformly bounded and biorthogonal

$$
\left\|B_{i}\right\|_{0} \preceq 1 \quad\left\|\Lambda_{k}\right\|_{0} \preceq 1 \quad \int_{D} B_{i} \Lambda_{k}=\delta_{i, k}
$$

Stability

For a weight function of order γ linear combinations of web-splines satisfy

$$
\left\|\sum_{i \in I} c_{i} B_{i}\right\|_{0} \asymp h^{m / 2}\|C\|,
$$

where the constants depend on D, ω and n.

Quasi-interpolant

standard projector

$$
P_{h} u=\sum_{i \in I}\left(\int \lambda_{i} u\right) B_{i}
$$

if ω is an ℓ-regular weight function of order γ

$$
\left\|P_{h} u\right\|_{\nu, Q \cap D} \leq \operatorname{const}(D, \omega, n) h^{-\nu}\|u\|_{0, Q^{\prime}}, \quad \nu \leq \min (\ell, n)
$$

where Q^{\prime} is the union of the supports of all web-splines which are nonzero on $Q \cap D$.

Approximation order

if ω is an ℓ-regular weight function of order γ and $v=u / w$ is smooth on \bar{D}, then

$$
\left\|u-P_{h} u\right\|_{\nu} \leq \operatorname{const}(D, \omega, u, n) h^{n+1-\nu}
$$

for $\nu \leq \min (\ell, n)$
\rightarrow optimal approximation order.

NUMERICAL EXAMPLES

Heat conduction problem

Δu	$=0$		in D
u	$=u_{0}$		on Γ
$\partial_{\perp} u$	$=-\gamma\left(u-u_{1}\right)$		on Γ_{0}
$\partial_{\perp} u$	$=0$		on Γ_{a}

Heat conduction problem

Relative errors for hat-functions (\diamond) and Web-spline approximations of degree $n=1,2,3,4,5$ (markers $*, \circ, \Delta, \square, \star$) as a function of the dimension d.

Further examples in the papers

\author{

- linear elasticity
 - thin plates
 - scattered data approximation
}

FURTHER REMARKS

Multigrid methods

for uniform B-spline basis:
grid transfer of web-splines (lecture: prolongation matrix)

$$
\begin{gathered}
\tilde{B}_{\ell} \ldots \text { grid width } 2 h \quad B_{\ell} \ldots \text { grid width } h \\
P_{h} \tilde{B}_{\ell}=\sum_{i \in I} p_{i, \ell} B_{i}, \quad p_{i, \ell}=\frac{\omega\left(x_{i}\right)}{\omega\left(\tilde{x}_{\ell}\right)}\left(s_{i-2 \ell}+\sum_{j \in \tilde{J}(\ell)} \tilde{e}_{\ell, j} s_{i-2 j}\right)
\end{gathered}
$$

where s are the coefficients from multivariate B-spline subdivision

Application in $\operatorname{Ig} A$

competitor to $\lg A$?

Application in $\operatorname{Ig} A$

competitor to $\lg A$?

Yes: alternative approach, closer to FEM, mathematical insights stability/ approximation properties similarly proven as for FEM

No: combination possible (e.g. trimmed surfaces, surfaces with holes ...), chance to use advantages of both methods

Advantages and Difficulties

Advantages stated by the authors

- no mesh generation
- homogeneous BC matched exactly
- accurate solutions with low-dimensional subspaces

■ smoothness and approximation order can be chosen arbitrarly

■ hierarchical basis permit adaptive refinement

- parallelization and multigrid possible

Advantages and Difficulties

Difficulties
■ tradeoff between difficulties
\square FEM: meshing
\square web-splines: weight functions
$\square \lg A$: parameterization of domain

- deciding whether grid cell is completely inside the domain

■ most of the advantages are valid for $\lg A$ as well

References

國 Höllig，Klaus，Ulrich Reif，and Joachim Wipper．＂Weighted extended B－spline approximation of Dirichlet problems．＂ SIAM Journal on Numerical Analysis 39.2 （2001）：442－462．
嗇 Höllig，Klaus，and Ulrich Reif．＂Nonuniform web－splines．＂ Computer Aided Geometric Design 20.5 （2003）：277－294．

睩 Höllig，Klaus，Christian Apprich，and Anja Streit． ＂Introduction to the Web－method and its applications．＂ Advances in Computational Mathematics 23．1－2（2005）： 215－237．

Höllig，Klaus．Finite element methods with B－splines．Vol． 26．Siam， 2003.

