# IsogEometric Tearing and Interconnecting

### Christoph Hofer and Ludwig Mitter

Johannes Kepler University, Linz

26.01.2017





#### □ IETI-DP

Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner

Numerical examples

Conclusion



# Motivation

- In 2D, using vertex primal variables works quite well.
- In 3D, condition number grows with  $H/h(1 + \log H/h)^2$ .

| 2D     |     |          | 3D  |        |     |          |     |
|--------|-----|----------|-----|--------|-----|----------|-----|
| #dofs  | H/h | $\kappa$ | lt. | #dofs  | H/h | $\kappa$ | lt. |
| 3350   | 11  | 11.4     | 23  | 3100   | 3   | 29.9     | 28  |
| 9614   | 19  | 14.5     | 25  | 7228   | 6   | 75.8     | 38  |
| 31742  | 35  | 18.1     | 27  | 23680  | 12  | 161      | 45  |
| 114398 | 67  | 22.2     | 28  | 106168 | 25  | 370      | 64  |
| 433310 | 131 | 26.6     | 30  |        |     |          |     |

- Using continuous edge/face averages gives (1 + log(H/h))<sup>2</sup>.
- Implementation gets a bit more tricky.
- Present method for arbitrary linear primal variables.
- Pechstein, C. (2012). Finite and boundary element tearing and interconnecting
  - solvers for multiscale problems (Vol. 90). Springer Science & Business Media.



# Motivation

- In 2D, using vertex primal variables works quite well.
- In 3D, condition number grows with  $H/h(1 + \log H/h)^2$ .

| 2D     |     |          | 3D  |        |     |          |     |
|--------|-----|----------|-----|--------|-----|----------|-----|
| #dofs  | H/h | $\kappa$ | lt. | #dofs  | H/h | $\kappa$ | lt. |
| 3350   | 11  | 11.4     | 23  | 3100   | 3   | 29.9     | 28  |
| 9614   | 19  | 14.5     | 25  | 7228   | 6   | 75.8     | 38  |
| 31742  | 35  | 18.1     | 27  | 23680  | 12  | 161      | 45  |
| 114398 | 67  | 22.2     | 28  | 106168 | 25  | 370      | 64  |
| 433310 | 131 | 26.6     | 30  |        |     |          |     |

- Using continuous edge/face averages gives  $(1 + \log(H/h))^2$ .
- Implementation gets a bit more tricky.
- Present method for arbitrary linear primal variables.
- Pechstein, C. (2012). Finite and boundary element tearing and interconnecting solvers for multiscale problems (Vol. 90). Springer Science & Business Media.



### Problem formulation - cG setting

Find  $u_h \in V_{D,h}$ :

$$a(u_h, v_h) = \langle F, v_h \rangle \quad \forall v_h \in V_{D,h},$$

where  $V_{D,h}$  is a conforming discrete subspaces of  $V_D$ , e.g.

$$\begin{split} a(u,v) &= \int_{\Omega} \alpha \nabla u \nabla v \, dx, \quad \langle F, v \rangle = \int_{\Omega} f v \, dx + \int_{\Gamma_N} g_N v \, ds \\ V_D &= \{ u \in H^1 : \gamma_0 u = 0 \text{ on } \Gamma_D \}, \\ V_{D,h} &= \prod_k \operatorname{span}\{N_{i,p}^{(k)}\} \cap H^1(\Omega). \end{split}$$

The variational equation is equivalent to Ku = f.

| noter, whitter |
|----------------|
|----------------|



### Overview

### □ IETI-DP

Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner
- Numerical examples

#### Conclusion



Given  $K^{\left(k\right)}$  and  $f^{\left(k\right)}\text{, we can reformulate}$ 

$$Ku = f \quad \leftrightarrow \quad \begin{bmatrix} K_e & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} f_e \\ 0 \end{bmatrix},$$

where 
$$K_e = \operatorname{diag}(K^{(k)})$$
 and  $f_e = [f^{(k)}]$ .

Since  $K_e$  is not invertible, we need additional primal variables incorporated in  $K_e \rightsquigarrow \widetilde{K}, \widetilde{B}, \widetilde{f}$ :

- continuous vertex values
- continuous edge/face averages



Given  $K^{(k)}$  and  $f^{(k)}$ , we can reformulate

$$Ku = f \quad \leftrightarrow \quad \begin{bmatrix} K_e & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} f_e \\ 0 \end{bmatrix},$$

where 
$$K_e = \operatorname{diag}(K^{(k)})$$
 and  $f_e = [f^{(k)}]$ .

Since  $K_e$  is not invertible, we need additional primal variables incorporated in  $K_e \rightsquigarrow \widetilde{K}, \widetilde{B}, \widetilde{f}$ :

- continuous vertex values
- continuous edge/face averages



Find  $(u, \lambda)$ 

$$\begin{bmatrix} \widetilde{K} & \widetilde{B}^T \\ \widetilde{B} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \widetilde{f}_e \\ 0 \end{bmatrix}.$$

 $\widetilde{K}$  is SPD, hence, we can define:

$$F := \widetilde{B}\widetilde{K}^{-1}\widetilde{B}^T \quad d := \widetilde{B}\widetilde{K}^{-1}\widetilde{f}$$

The saddle point system is equivalent to solving:

find 
$$\lambda \in U$$
:  $F\lambda = d$ .

Using the preconditioner  $M_{sD}^{-1}$ , we obtain:

$$\kappa(M_{sD}^{-1}F_{|\mathsf{ker}(\widetilde{B}^T)}) \leq C \max_{1 \leq k \leq N} \left(1 + \log\left(\frac{H_k}{h_k}\right)\right)^2,$$



### A bit more on primal variables

$$W^{(k)} := V_h^{(k)}, \quad W := \prod_k W^{(k)}, \quad \widehat{W} := V_h.$$

Intermediate space  $\widetilde{W}$ :  $\widehat{W} \subset \widetilde{W} \subset W$ ,  $\widetilde{K} := K_{|\widetilde{W}}$  is SPD. Let  $\Psi \subset V_{i}^{*}$  be a set of linearly independent primal variables

$$\begin{split} \widetilde{W} &:= \{ w \in W : \forall \psi \in \Psi : \psi(w_i) = \psi(w_j) \} \\ W_{\Delta} &:= \prod_{k=0}^{n} W_{\Delta}^{(k)} \quad \text{where } W_{\Delta}^{(k)} := \{ w \in W^{(k)} : \forall \psi \in \Psi : \psi(w_k) = 0 \} \\ \widetilde{W} &= W_{\Pi} \oplus W_{\Delta}, \quad W_{\Pi} \subset \widehat{W} \quad (\text{there are many choices for } W_{\Pi}) \end{split}$$

If  $\widetilde{W} \cap \ker(K) = \{0\}$ , then  $\widetilde{K}$  is invertible.



### A bit more on primal variables

$$W^{(k)} := V_h^{(k)}, \quad W := \prod_k W^{(k)}, \quad \widehat{W} := V_h.$$

Intermediate space  $\widetilde{W}$ :  $\widehat{W} \subset \widetilde{W} \subset W$ ,  $\widetilde{K} := K_{|\widetilde{W}}$  is SPD. Let  $\Psi \subset V_h^*$  be a set of linearly independent *primal variables*,

$$\begin{split} \widetilde{W} &:= \{ w \in W : \forall \psi \in \Psi : \psi(w_i) = \psi(w_j) \} \\ W_{\Delta} &:= \prod_{k=0}^{n} W_{\Delta}^{(k)} \quad \text{where } W_{\Delta}^{(k)} := \{ w \in W^{(k)} : \forall \psi \in \Psi : \psi(w_k) = 0 \} \\ \widetilde{W} &= W_{\Pi} \oplus W_{\Delta}, \quad W_{\Pi} \subset \widehat{W} \quad (\text{there are many choices for } W_{\Pi}) \\ \text{If } \widetilde{W} \cap \ker(K) = \{ 0 \}, \text{ then } \widetilde{K} \text{ is invertible.} \end{split}$$



### Typical examples of $\Psi$ and $\psi$

Choices for  $\psi$ :

- Vertex evaluation:  $\psi^{\mathcal{V}}(v) = v(\mathcal{V})$
- $\blacksquare$  Edge averages:  $\psi^{\mathcal{E}}(v) = \frac{1}{|\mathcal{E}|} \int_{\mathcal{E}} v \, ds$
- Face averages:  $\psi^{\mathcal{F}}(v) = \frac{1}{|\mathcal{F}|} \int_{\mathcal{F}} v \, ds$

Choices for  $\Psi$ :

• Algorithm A: 
$$\Psi = \{\psi^{\mathcal{V}}\}$$

- Algorithm B:  $\Psi = \{\psi^{\mathcal{V}}\} \cup \{\psi^{\mathcal{E}}\} \cup \{\psi^{\mathcal{F}}\}$
- Algorithm C:  $\Psi = \{\psi^{\mathcal{V}}\} \cup \{\psi^{\mathcal{E}}\}$



Since  $\widetilde{W}\subset W,$  there is a natural embedding  $\widetilde{I}:\widetilde{W}\to W.$  We can define:

$$\begin{array}{lll} & \widetilde{B} := B\widetilde{I} : & \widetilde{W} \to U^*, \\ & \widetilde{B}^T = \widetilde{I}^T B^T : & U \to \widetilde{W}^*, \\ & \widetilde{f} := \widetilde{I}^T f & \in \widetilde{W}^* \end{array}$$

As before, we can write our saddle point problem as: Find  $(u, \lambda) \in \widetilde{W} imes U$  :

$$\begin{bmatrix} \widetilde{K} & \widetilde{B}^T \\ \widetilde{B} & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = \begin{bmatrix} \widetilde{f} \\ 0 \end{bmatrix},$$



Since  $\widetilde{W} \subset W,$  there is a natural embedding  $\widetilde{I}: \widetilde{W} \to W.$  We can define:

$$\begin{array}{lll} & \widetilde{B} := B\widetilde{I} : & \widetilde{W} \to U^*, \\ & \widetilde{B}^T = \widetilde{I}^T B^T : & U \to \widetilde{W}^*, \\ & \widetilde{f} := \widetilde{I}^T f & \in \widetilde{W}^* \end{array}$$

As before, we can write our saddle point problem as: Find  $(u, \pmb{\lambda}) \in \widetilde{W} \times U$  :

$$\begin{bmatrix} \widetilde{K} & \widetilde{B}^T \\ \widetilde{B} & 0 \end{bmatrix} \begin{bmatrix} u \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \widetilde{f} \\ 0 \end{bmatrix},$$

| Hofer, | Mitter |
|--------|--------|
|--------|--------|

Overview

### IETI-DP

Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner
- Numerical examples

#### Conclusion

# CG Algorithm

The equation  $F \lambda = d$ , is solved via the PCG algorithm:

$$m{\lambda}_0$$
 given  $r_0=d-Fm{\lambda}_0, \quad k=0, \quad eta_{-1}=0$  repeat

$$s_{k} = M_{sD}^{-1} r_{k}$$

$$\beta_{k-1} = \frac{(r_{k}, s_{k})}{(r_{k-1}, s_{k-1})}$$

$$p_{k} = s_{k} + \beta_{k-1} p_{k-1}$$

$$\alpha_{k} = \frac{(r_{k}, s_{k})}{(Fp_{k}, p_{k})}$$

$$\lambda_{k+1} = r_{k} + \alpha_{k} p_{k}$$

$$r_{k+1} = r_{k} - \alpha_{k} Fp_{k}$$

$$k = k + 1$$

until stopping criterion fulfilled

### In order to use the CG-algorithm, we need

- Application of  $F := \widetilde{B}\widetilde{K}^{-1}\widetilde{B}^T$
- Application of  $M_{sD}^{-1} := B_D S_e B_D^T$

Representation of 
$$\widetilde{W}$$
:  
**a**  $\widetilde{K}: \widetilde{W} \to \widetilde{W}^*, \quad \widetilde{K}^{-1}: \widetilde{W}^* \to \widetilde{W}$   
**b**  $\widetilde{W} = W_{\Pi} \oplus \prod W_{\Delta}^{(k)}$   
**c** representation of  $w \in \widetilde{W}$  as  $\{w_{\Pi}, \{w_{\Delta}^{(k)}\}_k\}$   
**b** representation of  $f \in \widetilde{W}^*$  as  $\{f_{\Pi}, \{f_{\Delta}^{(k)}\}_k\}$ 

### In order to use the CG-algorithm, we need

- Application of  $F := \widetilde{B}\widetilde{K}^{-1}\widetilde{B}^T$
- Application of  $M_{sD}^{-1} := B_D S_e B_D^T$

Representation of  $\widetilde{W}$ :

$$\bullet \ \widetilde{K}: \widetilde{W} \to \widetilde{W}^*, \quad \widetilde{K}^{-1}: \widetilde{W}^* \to \widetilde{W}$$

$$\bullet \ \widetilde{W} = W_{\Pi} \oplus \prod W_{\Delta}^{(k)}$$

- representation of  $w \in \widetilde{W}$  as  $\{ \boldsymbol{w}_{\Pi}, \{ w_{\Delta}^{(k)} \}_k \}$
- representation of  $f \in \widetilde{W}^*$  as  $\{ \boldsymbol{f}_{\Pi}, \{ f_{\Delta}^{(k)} \}_k \}$

# $\widetilde{W} = W_{\Pi} \oplus \prod W_{\Delta}^{(k)}$

- Construction of the primal space  $W_{\Pi}$  and its basis.
- We choose the so called *energy minimizing primal subspaces*.
- The basis should be at least *local* and *nodal*.
- 2 possibilities to realize the dual space  $W_{\Delta}$ :
  - Transformation of basis: construction of basis, such that the primal variables vanishes.
  - Realization with local constraints: constraints are added to the matrix to enforce vanishing of primal variables.

# $\widetilde{W} = W_{\Pi} \oplus \prod W_{\Delta}^{(k)}$

- Construction of the primal space  $W_{\Pi}$  and its basis.
- We choose the so called *energy minimizing primal subspaces*.
- The basis should be at least *local* and *nodal*.
- 2 possibilities to realize the dual space  $W_{\Delta}$ :
  - Transformation of basis: construction of basis, such that the primal variables vanishes.
  - Realization with local constraints: constraints are added to the matrix to enforce vanishing of primal variables.

In any case, a block  $LDL^T$  factorization yields:

$$\widetilde{K} = \begin{bmatrix} K_{\Pi\Pi} & K_{\Pi\Delta} \\ K_{\Delta\Pi} & K_{\Delta\Delta} \end{bmatrix} \quad (\star)$$
$$\widetilde{K}^{-1} = \begin{bmatrix} I & 0 \\ -K_{\Delta\Delta}^{-1} K_{\Delta\Pi} & I \end{bmatrix} \begin{bmatrix} S_{\Pi}^{-1} & 0 \\ 0 & K_{\Delta\Delta}^{-1} \end{bmatrix} \begin{bmatrix} I & -K_{\Pi\Delta} K_{\Delta\Delta}^{-1} \\ 0 & I \end{bmatrix},$$

where  $S_{\Pi} = K_{\Pi\Pi} - K_{\Pi\Delta}K_{\Delta\Delta}^{-1}K_{\Delta\Pi}$ .

- In order to apply  $\widetilde{K}^{-1}$ , one needs a realization of the individual subcomponents.
- If only continuous vertex values are use, one obtains (\*) just by reordering. (as in the previous talk)

In any case, a block  $LDL^T$  factorization yields:

$$\widetilde{K} = \begin{bmatrix} K_{\Pi\Pi} & K_{\Pi\Delta} \\ K_{\Delta\Pi} & K_{\Delta\Delta} \end{bmatrix} \quad (\star)$$
$$\widetilde{K}^{-1} = \begin{bmatrix} I & 0 \\ -K_{\Delta\Delta}^{-1} K_{\Delta\Pi} & I \end{bmatrix} \begin{bmatrix} S_{\Pi}^{-1} & 0 \\ 0 & K_{\Delta\Delta}^{-1} \end{bmatrix} \begin{bmatrix} I & -K_{\Pi\Delta} K_{\Delta\Delta}^{-1} \\ 0 & I \end{bmatrix},$$

where  $S_{\Pi} = K_{\Pi\Pi} - K_{\Pi\Delta}K_{\Delta\Delta}^{-1}K_{\Delta\Pi}$ .

- In order to apply K̃<sup>-1</sup>, one needs a realization of the individual subcomponents.
- If only continuous vertex values are use, one obtains (\*) just by reordering. (as in the previous talk)

### Overview

### IETI-DP

#### Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner
- Numerical examples

#### Conclusion

# A nice subspace $W_{\Pi}$ and its basis

- energy minimizing primal subspaces:  $W_{\Pi} := W_{\Delta}^{\perp_K}$
- $\rightsquigarrow W_{\Pi}$  is K-orthogonal to  $W_{\Delta}$ , i.e.

 $\langle Kw_{\Pi}, w_{\Delta} \rangle = 0 \quad \forall w_{\Pi} \in W_{\Pi}, w_{\Delta} \in W_{\Delta}.$ 

$$\widetilde{K} = \begin{bmatrix} K_{\Pi\Pi} & 0 \\ 0 & K_{\Delta\Delta} \end{bmatrix} \Longrightarrow \widetilde{K}^{-1} = \begin{bmatrix} K_{\Pi\Pi}^{-1} & 0 \\ 0 & K_{\Delta\Delta}^{-1} \end{bmatrix}$$

## A nice subspace $W_{\Pi}$ and its basis

energy minimizing primal subspaces: W<sub>Π</sub> := W<sup>⊥</sup><sub>Δ</sub>
 → W<sub>Π</sub> is K-orthogonal to W<sub>Δ</sub>, i.e.

 $\langle Kw_{\Pi}, w_{\Delta} \rangle = 0 \quad \forall w_{\Pi} \in W_{\Pi}, w_{\Delta} \in W_{\Delta}.$ 

$$\widetilde{K} = \begin{bmatrix} K_{\Pi\Pi} & 0\\ 0 & K_{\Delta\Delta} \end{bmatrix} \Longrightarrow \widetilde{K}^{-1} = \begin{bmatrix} K_{\Pi\Pi}^{-1} & 0\\ 0 & K_{\Delta\Delta}^{-1} \end{bmatrix}$$

Choosing  $W_{\Pi}$  and constructing the basis

Nodal basis  $\phi$ :  $\psi_i(\phi_j) = \delta_{i,j}$ . For each patch k we define:

$$C^{(k)}: W^{(k)} \to \mathbb{R}^{n_{\Pi,k}}$$
$$(C^{(k)}v)_l = \psi_{i(k,l)}(v) \quad \forall v \in W^{(k)}, \forall l$$

The basis functions  $\{\widetilde{\phi}_j^{(k)}\}_{j=1}^{n_{\Pi,k}}$  are the solution of:

$$\begin{bmatrix} K^{(k)} & C^{(k)T} \\ C^{(k)} & 0 \end{bmatrix} \begin{bmatrix} \widetilde{\phi}^{(k)} \\ \widetilde{\mu}^{(k)} \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

For each patch the LU factorization is computed and stored.

| Hofer, Mitter | JKU Linz | 15 / 24 |
|---------------|----------|---------|

Choosing  $W_{\Pi}$  and constructing the basis

Nodal basis  $\phi$ :  $\psi_i(\phi_j) = \delta_{i,j}$ . For each patch k we define:

$$C^{(k)}: W^{(k)} \to \mathbb{R}^{n_{\Pi,k}}$$
$$(C^{(k)}v)_l = \psi_{i(k,l)}(v) \quad \forall v \in W^{(k)}, \forall l$$

The basis functions  $\{\widetilde{\phi}_{j}^{(k)}\}_{j=1}^{n_{\Pi,k}}$  are the solution of:

$$\begin{bmatrix} K^{(k)} & C^{(k)T} \\ C^{(k)} & 0 \end{bmatrix} \begin{bmatrix} \widetilde{\phi}^{(k)} \\ \widetilde{\mu}^{(k)} \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

For each patch the LU factorization is computed and stored.

| Hofer, Mitter | JKU Linz |
|---------------|----------|



#### Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner
- Numerical examples

#### Conclusion

Application of  $\widetilde{K}$ 

$$\begin{aligned} \text{Given } f &:= \{ \boldsymbol{f}_{\Pi}, \{ f_{\Delta}^{(k)} \} \} \in \widetilde{W}^*, \\ \text{Find } w &:= \{ \boldsymbol{w}_{\Pi}, \{ w_{\Delta}^{(k)} \} \} \in \widetilde{W} : \quad w = \widetilde{K}^{-1} f \\ & \widetilde{K}^{-1} = \begin{bmatrix} K_{\Pi\Pi}^{-1} & 0 \\ 0 & K_{\Delta\Delta}^{-1} \end{bmatrix} \end{aligned}$$

The application of  $\widetilde{K}^{-1}$  reduces to

$$\boldsymbol{w}_{\Pi} = K_{\Pi\Pi}^{-1} \boldsymbol{f}_{\Pi} \qquad \qquad w_{\Delta}^{(k)} = K_{\Delta\Delta}^{(k)^{-1}} f_{\Delta}^{(k)} \quad \forall k = 0, \dots, n$$

Multiplementation of primal variables : Application of  $\widetilde{K}^{-1}$ 

Application of 
$$K_{\Delta\Delta}^{(k)}$$
<sup>-1</sup>

The application of 
$${K^{(k)}_{\Delta\Delta}}^{-1}$$
 corresponds to

$$K^{(k)}w_k = f_{\Delta}^{(k)}$$

with the constraint 
$$C^{(k)}w_k = 0$$
.

This is equivalent to:

$$\begin{bmatrix} K^{(k)} & C^{(k)}^T \\ C^{(k)} & 0 \end{bmatrix} \begin{bmatrix} w_k \\ \cdot \end{bmatrix} = \begin{bmatrix} f_{\Delta}^{(k)} \\ 0 \end{bmatrix}$$

Implementation of primal variables : Application of  $\widetilde{K}^{-1}$ 

Application of 
$$K_{\Delta\Delta}^{(k)}$$
<sup>-1</sup>

The application of 
$${K^{(k)}_{\Delta\Delta}}^{-1}$$
 corresponds to

$$K^{(k)}w_k = f_{\Delta}^{(k)}$$

with the constraint  $C^{(k)}w_k = 0$ . This is equivalent to:

$$\begin{bmatrix} K^{(k)} & C^{(k)}^T \\ C^{(k)} & 0 \end{bmatrix} \begin{bmatrix} w_k \\ \cdot \end{bmatrix} = \begin{bmatrix} f_{\Delta}^{(k)} \\ 0 \end{bmatrix}$$

| Hofer, | Mitter |
|--------|--------|
|--------|--------|

# Application of $K_{\Pi\Pi}^{-1}$

 $K_{\Pi\Pi}$  can be assembled from the patch local matrices  $K_{\Pi\Pi}^{(k)}.$  Due to our special construction of  $\widetilde{\phi}^{(k)}$ , we have

$$\begin{split} \left( K_{\Pi\Pi}^{(k)} \right)_{i,j} &= \left\langle K^{(k)} \widetilde{\phi}_i^{(k)}, \widetilde{\phi}_j^{(k)} \right\rangle = - \left\langle C^{(k)T} \widetilde{\mu}_i^{(k)}, \widetilde{\phi}_j^{(k)} \right\rangle \\ &= - \left\langle \widetilde{\mu}_i^{(k)}, C^{(k)} \widetilde{\phi}_j^{(k)} \right\rangle = - \left\langle \widetilde{\mu}_i^{(k)}, \boldsymbol{e}_j^{(k)} \right\rangle \\ &= - \widetilde{\mu}_{i,j}^{(k)} \end{split}$$

Once  $K_{\Pi\Pi}$  is assembled, one can calculate its LU factorization.

Summary for application of  $F = \widetilde{B}K^{-1}\widetilde{B}^T$ 

Given  $\lambda \in U$ :

- 1. Application of  $B^T$  :  $\{f^{(k)}\}_{k=0}^n = B^T \boldsymbol{\lambda}$
- 2. Application of  $\widetilde{I}^T$ :  $\{f_{\Pi}, \{f_{\Delta}^{(k)}\}_{k=0}^n\} = \widetilde{I}^T\left(\{f^{(k)}\}_{k=0}^n\right)$
- 3. Application of  $\widetilde{K}^{-1}$ :

$$\boldsymbol{w}_{\Pi} = K_{\Pi\Pi}^{-1} \boldsymbol{f}_{\Pi}$$
$$\boldsymbol{w}_{\Delta}^{(k)} = K_{\Delta\Delta}^{(k)} \boldsymbol{f}_{\Delta}^{(k)} \quad \forall k = 0, \dots, n$$

4. Application of  $\widetilde{I}: \{w^{(k)}\}_{k=0}^n = \widetilde{I}\left(\{w_{\Pi}, \{w_{\Delta}^{(k)}\}_{k=0}^n\}\right)$ 

5. Application of 
$$B: \nu = B\left(\{w^{(k)}\}_{k=0}^n\right)$$

It remains to investigate  $\tilde{I}$  and  $\tilde{I}^T$ .

# Application of $\widetilde{I}$ and $\widetilde{I}^T$

 $\blacksquare$  embedding operator:  $\widetilde{I}: \widetilde{W} \to W$ 

$$\{\boldsymbol{w}_{\Pi}, \{w_{\Delta}^{(k)}\}_k\} \mapsto \boldsymbol{\Phi} \boldsymbol{A}^T \boldsymbol{w}_{\Pi} + w_{\Delta}$$

 $\blacksquare$  partial assembling operator:  $\widetilde{I}^T: W^* \to \widetilde{W}^*$ 

$$f \mapsto \{\boldsymbol{A}\boldsymbol{\Phi}^T f, \{(I - C^T \boldsymbol{\Phi}^T)f\}_k\}$$

 $\Phi$ ... basis of  $W_{\Pi}$  (block version) C... matrix representation of primal variables  $W_{\Pi}$  (block version) A... assembling operator  $A^{T}$ ... distribution operator

### Overview

### IETI-DP

#### Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner
- Numerical examples

#### Conclusion

Application of  $M_{sD}^{-1}$ 

The application of the preconditioner  $M_{sD}^{-1} = B_D S B_D^T$  is basically the application of S:

$$\begin{split} S &= \mathsf{diag}(S^{(k)}) \\ S^{(k)} &= K^{(k)}_{BB} - K^{(k)}_{BI} (K^{(k)}_{II})^{-1} K^{(k)}_{IB} \end{split}$$

The calculation of  $v^{(k)} = S^{(k)}w^{(k)}$  consists of 2 steps: 1. Solve:  $K_{II}^{(k)}x^{(k)} = -K_{IB}^{(k)}w^{(k)}$  (Dirichlet problem) 2.  $v^{(k)} = K_{BB}^{(k)}w^{(k)} + K_{BI}^{(k)}x^{(k)}$ Again, a LU factorization of  $K_{II}^{(k)}$  can be computed and store

٨

Application of  $M_{sD}^{-1}$ 

The application of the preconditioner  $M_{sD}^{-1} = B_D S B_D^T$  is basically the application of S:

$$\begin{split} S &= \mathsf{diag}(S^{(k)}) \\ S^{(k)} &= K^{(k)}_{BB} - K^{(k)}_{BI} (K^{(k)}_{II})^{-1} K^{(k)}_{IB} \end{split}$$

The calculation of  $v^{(k)} = S^{(k)}w^{(k)}$  consists of 2 steps:

1. Solve:  $K_{II}^{(k)} x^{(k)} = -K_{IB}^{(k)} w^{(k)}$  (Dirichlet problem) 2.  $v^{(k)} = K_{BB}^{(k)} w^{(k)} + K_{BI}^{(k)} x^{(k)}$ 

Again, a LU factorization of  $K_{II}^{(k)}$  can be computed and stored.

### Overview

### IETI-DP

Implementation of primal variables

- 1. Choosing  $\widetilde{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner

#### Numerical examples

#### Conclusion



# Example with $\alpha \equiv 1$ , p = 4

| 2D                          |     |          |     | 3D                                        |     |          |     |
|-----------------------------|-----|----------|-----|-------------------------------------------|-----|----------|-----|
| $\mathcal{V}$               |     |          |     | $\mathcal{V}$                             |     |          |     |
| #dofs                       | H/h | $\kappa$ | lt. | #dofs                                     | H/h | $\kappa$ | lt. |
| 3350                        | 11  | 11.4     | 23  | 3100                                      | 3   | 29.9     | 28  |
| 9614                        | 19  | 14.5     | 25  | 7228                                      | 6   | 75.8     | 38  |
| 31742                       | 35  | 18.1     | 27  | 23680                                     | 12  | 161      | 45  |
| 114398                      | 67  | 22.2     | 28  | 106168                                    | 25  | 370      | 64  |
| 433310                      | 131 | 26.6     | 30  |                                           |     |          |     |
| $\mathcal{V} + \mathcal{E}$ |     |          |     | $\mathcal{V} + \mathcal{E} + \mathcal{F}$ |     |          |     |
| 3350                        | 11  | 2.02     | 13  | 3100                                      | 3   | 3.1      | 16  |
| 9614                        | 19  | 2.39     | 14  | 7228                                      | 6   | 4.0      | 18  |
| 31742                       | 35  | 2.85     | 16  | 23680                                     | 12  | 5.0      | 21  |
| 114398                      | 67  | 3.37     | 17  | 106168                                    | 25  | 6.4      | 23  |
| 433310                      | 131 | 3.95     | 18  |                                           |     |          |     |

Hofer, Mitter



### p-dependence: 2D + 3D & different multiplicity

keeping multiplicity & increasing smoothness (- - - -)
 increasing multiplicity & keeping smoothness (-----)



| Hofer, Mitter | JKU Linz | 23 / 24 |
|---------------|----------|---------|



### Overview

### IETI-DP

Implementation of primal variables

- 1. Choosing  $\overline{W}_{\Pi}$  and constructing the basis
- 2. Application of  $\widetilde{K}^{-1}$
- 3. Application of the preconditioner

#### Numerical examples

#### Conclusion



### Conclusion and Extensions

- Also other primal variables can be realized in an efficient way.
- Provides application of IETI-DP to 3D problems.
- $\blacksquare$  With suitable scaling  $\leadsto$  robustness wrt. jumping coefficients.
- Method can be combined with dG-formulation.
- Parallelization wrt. patches (distributed memory setting).
- Instead of LU-factorization, one can use Multigrid (inexact IETI).
- Extension to nonlinear problems
  - Apply IETI to linearized equation
  - Apply IETI to non-linear equation and use Newton on each subdomain.