IsogEometric Tearing and Interconnecting

Christoph Hofer and Ludwig Mitter

Johannes Kepler University, Linz
26.01.2017
\square IETI-DP
\square Implementation of primal variables

1. Choosing \widetilde{W}_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner
\square Numerical examples
\square Conclusion

Motivation

■ In 2D, using vertex primal variables works quite well.

- In 3D, condition number grows with $H / h(1+\log H / h)^{2}$.

2D				3D			
\#dofs	H / h	κ	It.	\#dofs	H / h	κ	It.
3350	11	11.4	23	3100	3	29.9	28
9614	19	14.5	25	7228	6	75.8	38
31742	35	18.1	27	23680	12	161	45
114398	67	22.2	28	106168	25	370	64
433310	131	26.6	30				

Motivation

■ In 2D, using vertex primal variables works quite well.

- In 3D, condition number grows with $H / h(1+\log H / h)^{2}$.

2D				3D			
\#dofs	H / h	κ	It.	\#dofs	H / h	κ	It.
3350	11	11.4	23	3100	3	29.9	28
9614	19	14.5	25	7228	6	75.8	38
31742	35	18.1	27	23680	12	161	45
114398	67	22.2	28	106168	25	370	64
433310	131	26.6	30				

■ Using continuous edge/face averages gives $(1+\log (H / h))^{2}$.

- Implementation gets a bit more tricky.
- Present method for arbitrary linear primal variables.

■ Pechstein, C. (2012). Finite and boundary element tearing and interconnecting solvers for multiscale problems (Vol. 90). Springer Science \& Business Media.

Problem formulation - cG setting

Find $u_{h} \in V_{D, h}$:

$$
a\left(u_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle \quad \forall v_{h} \in V_{D, h},
$$

where $V_{D, h}$ is a conforming discrete subspaces of V_{D}, e.g.

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \alpha \nabla u \nabla v d x, \quad\langle F, v\rangle=\int_{\Omega} f v d x+\int_{\Gamma_{N}} g_{N} v d s \\
V_{D} & =\left\{u \in H^{1}: \gamma_{0} u=0 \text { on } \Gamma_{D}\right\}, \\
V_{D, h} & =\prod_{k} \operatorname{span}\left\{N_{i, p}^{(k)}\right\} \cap H^{1}(\Omega) .
\end{aligned}
$$

The variational equation is equivalent to $K u=f$.

Overview

\square IETI-DP

\square Implementation of primal variables

1. Choosing \widetilde{W}_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner

$\square \quad$ Numerical examples

\square Conclusion

IETI-DP

Given $K^{(k)}$ and $f^{(k)}$, we can reformulate

$$
K u=f \quad \leftrightarrow \quad\left[\begin{array}{cc}
K_{e} & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{c}
u \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
f_{e} \\
0
\end{array}\right]
$$

where $K_{e}=\operatorname{diag}\left(K^{(k)}\right)$ and $f_{e}=\left[f^{(k)}\right]$.

IETI-DP

Given $K^{(k)}$ and $f^{(k)}$, we can reformulate

$$
K u=f \quad \leftrightarrow \quad\left[\begin{array}{cc}
K_{e} & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{c}
u \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
f_{e} \\
0
\end{array}\right]
$$

where $K_{e}=\operatorname{diag}\left(K^{(k)}\right)$ and $f_{e}=\left[f^{(k)}\right]$.
Since K_{e} is not invertible, we need additional primal variables incorporated in $K_{e} \rightsquigarrow \widetilde{K}, \widetilde{B}, \widetilde{f}$:

- continuous vertex values

■ continuous edge/face averages

IETI-DP

Find $(u, \boldsymbol{\lambda})$

$$
\left[\begin{array}{cc}
\widetilde{K} & \widetilde{B}^{T} \\
\widetilde{B} & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
\widetilde{f}_{e} \\
0
\end{array}\right] .
$$

\widetilde{K} is SPD, hence, we can define:

$$
F:=\widetilde{B} \widetilde{K}^{-1} \widetilde{B}^{T} \quad d:=\widetilde{B} \widetilde{K}^{-1} \widetilde{f}
$$

The saddle point system is equivalent to solving:

$$
\text { find } \boldsymbol{\lambda} \in U: \quad F \boldsymbol{\lambda}=d
$$

Using the preconditioner $M_{s D}^{-1}$, we obtain:

$$
\kappa\left(M_{s D}^{-1} F_{\mid \operatorname{ker}\left(\widetilde{B^{T}}\right)}\right) \leq C \max _{1 \leq k \leq N}\left(1+\log \left(\frac{H_{k}}{h_{k}}\right)\right)^{2}
$$

A bit more on primal variables

$$
W^{(k)}:=V_{h}^{(k)}, \quad W:=\prod_{k} W^{(k)}, \quad \widehat{W}:=V_{h} .
$$

Intermediate space $\widetilde{W}: \widehat{W} \subset \widetilde{W} \subset W, \widetilde{K}:=K_{\mid \widetilde{W}}$ is SPD.

A bit more on primal variables

$$
W^{(k)}:=V_{h}^{(k)}, \quad W:=\prod_{k} W^{(k)}, \quad \widehat{W}:=V_{h}
$$

Intermediate space $\widetilde{W}: \widehat{W} \subset \widetilde{W} \subset W, \widetilde{K}:=K_{\mid \widetilde{W}}$ is SPD.
Let $\Psi \subset V_{h}^{*}$ be a set of linearly independent primal variables,

$$
\begin{aligned}
\widetilde{W} & :=\left\{w \in W: \forall \psi \in \Psi: \psi\left(w_{i}\right)=\psi\left(w_{j}\right)\right\} \\
W_{\Delta} & :=\prod_{k=0}^{n} W_{\Delta}^{(k)} \quad \text { where } W_{\Delta}^{(k)}:=\left\{w \in W^{(k)}: \forall \psi \in \Psi: \psi\left(w_{k}\right)=0\right\}
\end{aligned}
$$

$\widetilde{W}=W_{\Pi} \oplus W_{\Delta}, \quad W_{\Pi} \subset \widehat{W} \quad$ (there are many choices for W_{Π})
If $\widetilde{W} \cap \operatorname{ker}(K)=\{0\}$, then \widetilde{K} is invertible.

Typical examples of Ψ and ψ

Choices for ψ :
■ Vertex evaluation: $\psi^{\mathcal{V}}(v)=v(\mathcal{V})$
■ Edge averages: $\psi^{\mathcal{E}}(v)=\frac{1}{|\mathcal{E}|} \int_{\mathcal{E}} v d s$
■ Face averages: $\psi^{\mathcal{F}}(v)=\frac{1}{|\mathcal{F}|} \int_{\mathcal{F}} v d s$
Choices for Ψ :

- Algorithm A: $\Psi=\left\{\psi^{\mathcal{V}}\right\}$

■ Algorithm B: $\Psi=\left\{\psi^{\mathcal{V}}\right\} \cup\left\{\psi^{\mathcal{E}}\right\} \cup\left\{\psi^{\mathcal{F}}\right\}$

- Algorithm $\mathrm{C}: \Psi=\left\{\psi^{\mathcal{V}}\right\} \cup\left\{\psi^{\mathcal{E}}\right\}$

Since $\widetilde{W} \subset W$, there is a natural embedding $\widetilde{I}: \widetilde{W} \rightarrow W$. We can define:

- $\widetilde{B}:=B \widetilde{I}: \quad \widetilde{W} \rightarrow U^{*}$,
- $\widetilde{B}^{T}=\widetilde{I}^{T} B^{T}: \quad U \rightarrow \widetilde{W}^{*}$,
- $\widetilde{f}:=\widetilde{I}^{T} f \quad \in \widetilde{W}^{*}$

Since $\widetilde{W} \subset W$, there is a natural embedding $\widetilde{I}: \widetilde{W} \rightarrow W$. We can define:

- $\widetilde{B}:=B \widetilde{I}: \quad \widetilde{W} \rightarrow U^{*}$,
- $\widetilde{B}^{T}=\widetilde{I}^{T} B^{T}: \quad U \rightarrow \widetilde{W}^{*}$,
- $\widetilde{f}:=\widetilde{I}^{T} f \quad \in \widetilde{W}^{*}$

As before, we can write our saddle point problem as:
Find $(u, \boldsymbol{\lambda}) \in \widetilde{W} \times U$:

$$
\left[\begin{array}{cc}
\widetilde{K} & \widetilde{B}^{T} \\
\widetilde{B} & 0
\end{array}\right]\left[\begin{array}{l}
u \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
\widetilde{f} \\
0
\end{array}\right],
$$

Overview

\square Implementation of primal variables

1. Choosing \widetilde{W}_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner

$\square \quad$ Numerical examples

Conclusion

CG Algorithm

The equation $F \boldsymbol{\lambda}=d$, is solved via the PCG algorithm:
λ_{0} given
$r_{0}=d-F \boldsymbol{\lambda}_{0}, \quad k=0, \quad \beta_{-1}=0$
repeat

$$
\begin{aligned}
& s_{k}=M_{s D}^{-1} r_{k} \\
& \beta_{k-1}=\frac{\left(r_{k}, s_{k}\right)}{\left(r_{k-1}, s_{k-1}\right)} \\
& p_{k}=s_{k}+\beta_{k-1} p_{k-1} \\
& \alpha_{k}=\frac{\left(r_{k}, s_{k}\right)}{\left(F p_{k}, p_{k}\right)} \\
& \boldsymbol{\lambda}_{k+1}=r_{k}+\alpha_{k} p_{k} \\
& r_{k+1}=r_{k}-\alpha_{k} F p_{k} \\
& k=k+1
\end{aligned}
$$

until stopping criterion fulfilled

Required realizations

In order to use the CG-algorithm, we need

- Application of $F:=\widetilde{B} \widetilde{K}^{-1} \widetilde{B}^{T}$
- Application of $M_{s D}^{-1}:=B_{D} S_{e} B_{D}^{T}$

Required realizations

In order to use the CG-algorithm, we need

- Application of $F:=\widetilde{B} \widetilde{K}^{-1} \widetilde{B}^{T}$
- Application of $M_{s D}^{-1}:=B_{D} S_{e} B_{D}^{T}$

Representation of \widetilde{W} :

- $\widetilde{K}: \widetilde{W} \rightarrow \widetilde{W}^{*}, \quad \widetilde{K}^{-1}: \widetilde{W}^{*} \rightarrow \widetilde{W}$

■ $\widetilde{W}=W_{\Pi} \oplus \prod W_{\Delta}^{(k)}$

- representation of $w \in \widetilde{W}$ as $\left\{\boldsymbol{w}_{\Pi},\left\{w_{\Delta}^{(k)}\right\}_{k}\right\}$
- representation of $f \in \widetilde{W}^{*}$ as $\left\{\boldsymbol{f}_{\Pi},\left\{f_{\Delta}^{(k)}\right\}_{k}\right\}$

Required realizations

$$
\widetilde{W}=W_{\Pi} \oplus \Pi W_{\Delta}^{(k)}
$$

■ Construction of the primal space W_{Π} and its basis.
■ We choose the so called energy minimizing primal subspaces.

- The basis should be at least local and nodal.

Required realizations

$$
\widetilde{W}=W_{\Pi} \oplus \Pi W_{\Delta}^{(k)}
$$

■ Construction of the primal space W_{Π} and its basis.
■ We choose the so called energy minimizing primal subspaces.

- The basis should be at least local and nodal.
- 2 possibilities to realize the dual space W_{Δ} :
- Transformation of basis: construction of basis, such that the primal variables vanishes.
- Realization with local constraints: constraints are added to the matrix to enforce vanishing of primal variables.

Required realizations

In any case, a block $L D L^{T}$ factorization yields:

$$
\begin{aligned}
\widetilde{K} & =\left[\begin{array}{ll}
K_{\Pi \Pi} & K_{\Pi \Delta} \\
K_{\Delta \Pi} & K_{\Delta \Delta}
\end{array}\right] \quad(\star) \\
\widetilde{K}^{-1} & =\left[\begin{array}{cc}
I & 0 \\
-K_{\Delta \Delta}^{-1} K_{\Delta \Pi} & I
\end{array}\right]\left[\begin{array}{cc}
S_{\Pi}^{-1} & 0 \\
0 & K_{\Delta \Delta}^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -K_{\Pi \Delta} K_{\Delta \Delta}^{-1} \\
0 & I
\end{array}\right],
\end{aligned}
$$

where $S_{\Pi}=K_{\Pi \Pi}-K_{\Pi \Delta} K_{\Delta \Delta}^{-1} K_{\Delta \Pi}$.

Required realizations

In any case, a block $L D L^{T}$ factorization yields:

$$
\begin{aligned}
\widetilde{K} & =\left[\begin{array}{ll}
K_{\Pi \Pi} & K_{\Pi \Delta} \\
K_{\Delta \Pi} & K_{\Delta \Delta}
\end{array}\right](\star) \\
\widetilde{K}^{-1} & =\left[\begin{array}{cc}
I & 0 \\
-K_{\Delta \Delta}^{-1} K_{\Delta \Pi} & I
\end{array}\right]\left[\begin{array}{cc}
S_{\Pi}^{-1} & 0 \\
0 & K_{\Delta \Delta}^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -K_{\Pi \Delta} K_{\Delta \Delta}^{-1} \\
0 & I
\end{array}\right],
\end{aligned}
$$

where $S_{\Pi}=K_{\Pi \Pi}-K_{\Pi \Delta} K_{\Delta \Delta}^{-1} K_{\Delta \Pi}$.

- In order to apply \widetilde{K}^{-1}, one needs a realization of the individual subcomponents.
■ If only continuous vertex values are use, one obtains (\star) just by reordering. (as in the previous talk)

Overview

\square Implementation of primal variables

1. Choosing \widetilde{W}_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner

$\square \quad$ Numerical examples

A nice subspace W_{Π} and its basis

■ energy minimizing primal subspaces: $W_{\Pi}:=W_{\Delta}^{\perp_{K}}$
■ $\rightsquigarrow W_{\Pi}$ is K-orthogonal to W_{Δ}, i.e.

$$
\left\langle K w_{\Pi}, w_{\Delta}\right\rangle=0 \quad \forall w_{\Pi} \in W_{\Pi}, w_{\Delta} \in W_{\Delta}
$$

A nice subspace W_{Π} and its basis

■ energy minimizing primal subspaces: $W_{\Pi}:=W_{\Delta}^{\perp_{K}}$
■ $\rightsquigarrow W_{\Pi}$ is K-orthogonal to W_{Δ}, i.e.

$$
\begin{gathered}
\left\langle K w_{\Pi}, w_{\Delta}\right\rangle=0 \quad \forall w_{\Pi} \in W_{\Pi}, w_{\Delta} \in W_{\Delta} \\
\widetilde{K}=\left[\begin{array}{cc}
K_{\Pi \Pi} & 0 \\
0 & K_{\Delta \Delta}
\end{array}\right] \Longrightarrow \widetilde{K}^{-1}=\left[\begin{array}{cc}
K_{\Pi \Pi}^{-1} & 0 \\
0 & K_{\Delta \Delta}^{-1}
\end{array}\right]
\end{gathered}
$$

Choosing W_{Π} and constructing the basis

Nodal basis $\widetilde{\phi}: \psi_{i}\left(\widetilde{\phi}_{j}\right)=\delta_{i, j}$.
For each patch k we define:

$$
\begin{aligned}
& C^{(k)}: W^{(k)} \rightarrow \mathbb{R}^{n_{\Pi, k}} \\
& \quad\left(C^{(k)} v\right)_{l}=\psi_{i(k, l)}(v) \quad \forall v \in W^{(k)}, \forall l
\end{aligned}
$$

Choosing W_{Π} and constructing the basis

Nodal basis $\widetilde{\phi}: \psi_{i}\left(\widetilde{\phi}_{j}\right)=\delta_{i, j}$.
For each patch k we define:

$$
\begin{aligned}
& C^{(k)}: W^{(k)} \rightarrow \mathbb{R}^{n_{\Pi, k}} \\
& \quad\left(C^{(k)} v\right)_{l}=\psi_{i(k, l)}(v) \quad \forall v \in W^{(k)}, \forall l
\end{aligned}
$$

The basis functions $\left\{\widetilde{\phi}_{j}^{(k)}\right\}_{j=1}^{n_{\Pi, k}}$ are the solution of:

$$
\left[\begin{array}{cc}
K^{(k)} & C^{(k)^{T}} \\
C^{(k)} & 0
\end{array}\right]\left[\begin{array}{l}
\widetilde{\phi}^{(k)} \\
\widetilde{\mu}^{(k)}
\end{array}\right]=\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

For each patch the LU factorization is computed and stored.

Overview

\square IETI-DP

\square Implementation of primal variables

1. Choosing W_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner

$\square \quad$ Numerical examples

\square Conclusion

Application of \widetilde{K}

Given $f:=\left\{\boldsymbol{f}_{\Pi},\left\{f_{\Delta}^{(k)}\right\}\right\} \in \widetilde{W}^{*}$,
Find $w:=\left\{\boldsymbol{w}_{\Pi},\left\{w_{\Delta}^{(k)}\right\}\right\} \in \widetilde{W}: \quad w=\widetilde{K}^{-1} f$

$$
\widetilde{K}^{-1}=\left[\begin{array}{cc}
K_{\Pi \Pi}^{-1} & 0 \\
0 & K_{\Delta \Delta}^{-1}
\end{array}\right]
$$

The application of \widetilde{K}^{-1} reduces to

$$
\boldsymbol{w}_{\Pi}=K_{\Pi \Pi}^{-1} \boldsymbol{f}_{\Pi} \quad w_{\Delta}^{(k)}=K_{\Delta \Delta}^{(k)}{ }^{-1} f_{\Delta}^{(k)} \quad \forall k=0, \ldots, n
$$

A Implementation of primal variables: Application of \widetilde{K}^{-1}
Application of $K_{\Delta \Delta}^{(k)-1}$

The application of $K_{\Delta \Delta}^{(k)^{-1}}$ corresponds to

$$
K^{(k)} w_{k}=f_{\Delta}^{(k)}
$$

with the constraint $C^{(k)} w_{k}=0$.

Application of $K_{\Delta \Delta}^{(k)^{-1}}$

The application of $K_{\Delta \Delta}^{(k)^{-1}}$ corresponds to

$$
K^{(k)} w_{k}=f_{\Delta}^{(k)}
$$

with the constraint $C^{(k)} w_{k}=0$.
This is equivalent to:

$$
\left[\begin{array}{cc}
K^{(k)} & C^{(k)^{T}} \\
C^{(k)} & 0
\end{array}\right]\left[\begin{array}{c}
w_{k} \\
\cdot
\end{array}\right]=\left[\begin{array}{c}
f_{\Delta}^{(k)} \\
0
\end{array}\right]
$$

Application of $K_{\Pi \Pi}^{-1}$

$K_{\Pi \Pi}$ can be assembled from the patch local matrices $K_{\Pi \Pi}^{(k)}$. Due to our special construction of $\widetilde{\phi}^{(k)}$, we have

$$
\begin{aligned}
\left(K_{\Pi \Pi}^{(k)}\right)_{i, j} & =\left\langle K^{(k)} \widetilde{\phi}_{i}^{(k)}, \widetilde{\phi}_{j}^{(k)}\right\rangle=-\left\langle C^{(k)^{T}} \widetilde{\boldsymbol{\mu}}_{i}^{(k)}, \widetilde{\phi}_{j}^{(k)}\right\rangle \\
& =-\left\langle\widetilde{\boldsymbol{\mu}}_{i}^{(k)}, C^{(k)} \widetilde{\phi}_{j}^{(k)}\right\rangle=-\left\langle\widetilde{\boldsymbol{\mu}}_{i}^{(k)}, \boldsymbol{e}_{j}^{(k)}\right\rangle \\
& =-\widetilde{\boldsymbol{\mu}}_{i, j}^{(k)}
\end{aligned}
$$

Once $K_{\Pi \Pi}$ is assembled, one can calculate its LU factorization.

Summary for application of $F=\widetilde{B} K^{-1} \widetilde{B}^{T}$

Given $\boldsymbol{\lambda} \in U$:

1. Application of $B^{T}:\left\{f^{(k)}\right\}_{k=0}^{n}=B^{T} \boldsymbol{\lambda}$
2. Application of $\widetilde{I}^{T}:\left\{\boldsymbol{f}_{\Pi},\left\{f_{\Delta}^{(k)}\right\}_{k=0}^{n}\right\}=\widetilde{I}^{T}\left(\left\{f^{(k)}\right\}_{k=0}^{n}\right)$
3. Application of \widetilde{K}^{-1} :

■ $\boldsymbol{w}_{\Pi}=K_{\Pi \Pi}^{-1} \boldsymbol{f}_{\Pi}$
■ $w_{\Delta}^{(k)}=K_{\Delta \Delta}^{(k)^{-1}} f_{\Delta}^{(k)} \quad \forall k=0, \ldots, n$
4. Application of $\widetilde{I}:\left\{w^{(k)}\right\}_{k=0}^{n}=\widetilde{I}\left(\left\{\boldsymbol{w}_{\Pi},\left\{w_{\Delta}^{(k)}\right\}_{k=0}^{n}\right\}\right)$
5. Application of $B: \nu=B\left(\left\{w^{(k)}\right\}_{k=0}^{n}\right)$

It remains to investigate \widetilde{I} and \widetilde{I}^{T}.

Application of \widetilde{I} and \widetilde{I}^{T}

- embedding operator: $\widetilde{I}: \widetilde{W} \rightarrow W$

$$
\left\{\boldsymbol{w}_{\Pi},\left\{w_{\Delta}^{(k)}\right\}_{k}\right\} \mapsto \boldsymbol{\Phi} \boldsymbol{A}^{T} \boldsymbol{w}_{\Pi}+w_{\Delta}
$$

- partial assembling operator: $\widetilde{I}^{T}: W^{*} \rightarrow \widetilde{W}^{*}$

$$
f \mapsto\left\{\boldsymbol{A} \boldsymbol{\Phi}^{T} f,\left\{\left(I-C^{T} \boldsymbol{\Phi}^{T}\right) f\right\}_{k}\right\}
$$

$\boldsymbol{\Phi}$. . . basis of W_{Π} (block version)
C. . . matrix representation of primal variables W_{Π} (block version)
A. . . assembling operator
$\boldsymbol{A}^{T} \ldots$ distribution operator

Overview

\square IETI-DP

\square Implementation of primal variables

1. Choosing W_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditioner

$\square \quad$ Numerical examples

\square Conclusion

Application of $M_{s D}^{-1}$

The application of the preconditioner $M_{s D}^{-1}=B_{D} S B_{D}^{T}$ is basically the application of S :

$$
\begin{aligned}
S & =\operatorname{diag}\left(S^{(k)}\right) \\
S^{(k)} & =K_{B B}^{(k)}-K_{B I}^{(k)}\left(K_{I I}^{(k)}\right)^{-1} K_{I B}^{(k)}
\end{aligned}
$$

Application of $M_{s D}^{-1}$

The application of the preconditioner $M_{s D}^{-1}=B_{D} S B_{D}^{T}$ is basically the application of S :

$$
\begin{aligned}
S & =\operatorname{diag}\left(S^{(k)}\right) \\
S^{(k)} & =K_{B B}^{(k)}-K_{B I}^{(k)}\left(K_{I I}^{(k)}\right)^{-1} K_{I B}^{(k)}
\end{aligned}
$$

The calculation of $v^{(k)}=S^{(k)} w^{(k)}$ consists of 2 steps:

1. Solve: $K_{I I}^{(k)} x^{(k)}=-K_{I B}^{(k)} w^{(k)} \quad$ (Dirichlet problem)
2. $v^{(k)}=K_{B B}^{(k)} w^{(k)}+K_{B I}^{(k)} x^{(k)}$

Again, a LU factorization of $K_{I I}^{(k)}$ can be computed and stored.

Overview

\square Implementation of primal variables

1. Choosing \widetilde{W}_{Π} and constructing the basis
2. Application of \widetilde{K}^{-1}
3. Application of the preconditionerNumerical examplesConclusion

Example with $\alpha \equiv 1, p=4$

2D				3D				
\mathcal{V}			\mathcal{V}					
\#dofs	H / h	κ	It.	\#dofs	H / h	κ	It.	
3350	11	11.4	23	3100	3	29.9	28	
9614	19	14.5	25	7228	6	75.8	38	
31742	35	18.1	27	23680	12	161	45	
114398	67	22.2	28	106168	25	370	64	
433310	131	26.6	30					
$\mathcal{V}+\mathcal{E}$					$\mathcal{V}+\mathcal{E}+\mathcal{F}$			
3350	11	2.02	13	3100	3	3.1	16	
9614	19	2.39	14	7228	6	4.0	18	
31742	35	2.85	16	23680	12	5.0	21	
114398	67	3.37	17	106168	25	6.4	23	
433310	131	3.95	18					

p-dependence: 2D + 3D \& different multiplicity

■ keeping multiplicity \& increasing smoothness (- - -)

- increasing multiplicity \& keeping smoothness (-)

Overview

```
IETI-DP
\squareImplementation of primal variables
1. Choosing W}\mp@subsup{W}{\Pi}{}\mathrm{ and constructing the basis
2. Application of }\mp@subsup{\widetilde{K}}{}{-1
3. Application of the preconditioner
```

$\square \quad$ Numerical examples
\square Conclusion

Conclusion and Extensions

■ Also other primal variables can be realized in an efficient way.

- Provides application of IETI-DP to 3D problems.

■ With suitable scaling \rightsquigarrow robustness wrt. jumping coefficients.

- Method can be combined with dG-formulation.

■ Parallelization wrt. patches (distributed memory setting).
■ Instead of LU-factorization, one can use Multigrid (inexact IETI).

- Extension to nonlinear problems
- Apply IETI to linearized equation
- Apply IETI to non-linear equation and use Newton on each subdomain.

