Matrix assembly by low rank tensor approximation

Felix Scholz

13.02.2017

References

© Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer.
Matrix generation in isogeometric analysis by low rank tensor approximation.
In Curves and Surfaces, volume 9213 of LNCS, pages 321-340.
Springer, 2015.
图 Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer.
Low rank tensor methods in galerkin-based isogeometric analysis.
Technical report, Radon Institute for Computational and Applied
Mathematics, 2016.
W. Hackbusch.

Tensor spaces and numerical tensor calculus.
Springer, Berlin, 2012.
(T) M. Griebel and H. Harbrecht.

Approximation of two-variate functions: Singular value decomposition versus sparse grids.
IMA Journal of Numerical Analysis, 2011.
嗇 Bert Jüttler and Dominik Mokriš.
Low rank spline interpolation of boundary value curves.
G+S Report No. 47, 2016.

Overview

- Motivation
- Singular Value Decomposition (SVD) of functions
- Discrete Singular Value Decomposition
- Numerical examples
- Generalisation to arbitrary dimensions

Motivation

Given a parametrisation of the physical domain Ω by a regular tensor product B-Spline (or NURBS) function

$$
F: \hat{\Omega} \longrightarrow \Omega
$$

we consider the weak formulation an elliptic equation as a model problem:
Find $u \in H_{0}^{1}(\Omega)$, such that

$$
a(u, v)=(f, v)_{0, \Omega} \forall v \in H_{0}^{1}(\Omega)
$$

where

$$
a(u, v)=\int_{\Omega} \nabla_{x} u(x) \cdot\left(A(x) \nabla_{x} v(x)\right)+c u(x) v(x) \mathrm{d} x .
$$

Motivation

We consider the 2D-case with $\hat{\Omega}=[0,1]^{2}, A \equiv I$ and $c \equiv 1$. As the discrete space of functions on the parametric domain we choose a tensor spline space

$$
S_{p}(\bar{\Xi})=S_{p_{1}}\left(\bar{\Xi}_{1}\right) \otimes S_{p_{2}}\left(\bar{\Xi}_{2}\right)
$$

with the B -spline basis

$$
\hat{B}_{i, p}(\xi)=\hat{B}_{i_{1}, p_{1}}\left(\xi_{1}\right) \hat{B}_{i_{2}, p_{2}}\left(\xi_{2}\right)
$$

and set the discrete space of functions on the physical domain to be (up to the boundary conditions)

$$
V_{h}:=\operatorname{span}\left\{\hat{B}_{i} \circ F^{-1}\right\}=\operatorname{span}\left\{B_{i}\right\} .
$$

Motivation

Computing the L^{2}-product of the basis elements we get the entries of the mass matrix:

$$
\begin{aligned}
M_{i j} & =\int_{\Omega} B_{i}(x) B_{j}(x) \mathrm{d} x \\
& =\int_{\hat{\Omega}}\left|\operatorname{det} \nabla_{\xi} F(\xi)\right| \hat{B}_{i}(\xi) \hat{B}_{j}(\xi) \mathrm{d} \xi \\
& =\int_{0}^{1} \int_{0}^{1} \omega(\xi) \hat{B}_{i_{1}}\left(\xi_{1}\right) \hat{B}_{j_{1}}\left(\xi_{1}\right) \hat{B}_{i_{2}}\left(\xi_{2}\right) \hat{B}_{j_{2}}\left(\xi_{2}\right) \mathrm{d} \xi_{1} \mathrm{~d} \xi_{2}
\end{aligned}
$$

where $\omega(\xi)=\operatorname{det} \nabla_{\xi} F(\xi)$. Analogously we get for the stiffness matrix

$$
\begin{aligned}
S_{i j} & =\int_{\Omega} \nabla_{x} B_{i} \cdot \nabla_{x} B_{j} \mathrm{~d} x \\
& =\sum_{p, q=1}^{2} \int_{0}^{1} \int_{0}^{1} K_{p q}(\xi) \frac{\partial}{\partial \xi_{p}} \hat{B}_{i} \frac{\partial}{\partial \xi_{q}} \hat{B}_{j} \mathrm{~d} \xi
\end{aligned}
$$

where $K(\xi)=\left(\operatorname{det} \nabla_{\xi} F\right)\left(\nabla_{\xi} F\right)^{-1}\left(\nabla_{\xi} F\right)^{-T}$.

Motivation

The complexity of computing the bivariate integrals in $S_{i j}$ and $M_{i j}$ by Gauss quadrature is in $O\left(n^{2} p^{6}\right)$ (if $n=n_{1}=n_{2}$ and $p_{1}=p_{2}$). We want to decompose the functions $\omega(\xi)$ and $K_{p q}(\xi)$ into products of univariate functions so we only need to compute univariate integrals where the complexity is $O\left(n p^{3}\right)$.

Singular value decomposition of a function

Any bivariate continuous function $f \in C([0,1] \times[0,1])$ has a singular value decomposition

$$
f\left(\xi_{1}, \xi_{2}\right)=\sum_{r=1}^{\infty} \sigma_{r} u_{r}\left(\xi_{1}\right) v_{r}\left(\xi_{2}\right)
$$

where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$ and $\left\{u_{r}\right\}_{r \geq 1}$ and $\left\{v_{r}\right\}_{r \geq 1}$ are $L^{2}((0,1))$-orthonormal systems of continuous functions. The sum converges in $L^{2}((0,1) \times(0,1))$.
The rank R-approximation

$$
f_{R}\left(\xi_{1}, \xi_{2}\right)=\sum_{r=1}^{R} \sigma_{r} u_{r}\left(\xi_{1}\right) v_{r}\left(\xi_{2}\right)
$$

is the best approximation of f by a rank R function in the L^{2}-norm.

Singular value decomposition of a function

Lemma
If $f \in H^{s}((0,1) \times(0,1))$, then
(i) the singular values decay like

$$
\sigma_{r} \lesssim r^{-s}
$$

(ii) the approximation error fulfils

$$
\left\|f-f_{R}\right\|_{L^{2}}=\sqrt{\sum_{r=R+1}^{\infty} \sigma_{r}^{2}} \lesssim R^{\frac{1}{2}-s}
$$

Proof.
Griebel, 2011. [4]

Discrete singular value decomposition

A low rank approximation of the functions ω and $K_{p q}$ is computed as follows:

1. Project the function ω or $K_{p q}$ into a suitable spline space.
2. Decompose the coefficient tensor using matrix SVD.
3. Choose the rank R such that the overall approximation error is lower than a given constant ϵ, for example the discretisation error.

Projection into a spline space

The function $\omega=\operatorname{det} \nabla F$ is a tensor product spline function of higher polynomial degrees $q_{d}=2 p_{d}-1$ and lower smoothness than F. We can thus represent it exactly with respect to a B-Spline basis $\left\{\bar{B}_{i}\right\}_{i \leq\left(m_{1}, m_{2}\right)}$.

$$
\omega(\xi)=\Pi \omega(\xi)=\sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}} \omega_{i_{1} i_{2}} \bar{B}_{i_{1}}\left(\xi_{1}\right) \bar{B}_{i_{2}}\left(\xi_{2}\right)
$$

For the functions $K_{p q}$ we choose a sufficiently refined spline space $\operatorname{span}\left\{\bar{B}_{i}\right\}$ such that

$$
\left\|K_{p q}-\Pi K_{p q}\right\|_{L^{2}(\hat{\Omega})}=\left\|K_{p q}-\sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}}\left(K_{p q}\right)_{i_{1} i_{2}} \bar{B}_{i_{1}} \bar{B}_{i_{2}}\right\|_{L^{2}(\hat{\Omega})} \leq \epsilon_{\Pi}
$$

Decomposition of the coefficient tensor

We compute the SVD of the $m_{1} \times m_{2}$ matrix $W=\left(\omega_{i_{1} i_{2}}\right)$, i.e.

$$
W=U \Sigma V^{T}=\sum_{r=1}^{\min \left(m_{1}, m_{2}\right)} \sigma_{r} u_{r} v_{r}^{T}
$$

where U is an orthogonal $m_{1} \times m_{1}$-matrix with columns u_{r}, V is an orthogonal $m_{2} \times m_{2}$-matrix with columns v_{r} and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\min \left(m_{1}, m_{2}\right)}\right)$. We assume $\sigma_{1} \geq \ldots \geq \sigma_{\min \left(m_{1}, m_{2}\right)}$.

Decomposition of the coefficient tensor

The rank- R approximation

$$
W_{R}=\sum_{r=1}^{R} \sigma_{r} u_{r} v_{r}^{T}
$$

is the best approximation of W by a matrix of rank R in the Frobenius norm and fulfils

$$
\left\|W-W_{R}\right\|_{F}=\sqrt{\sum_{r=R+1}^{\min \left(m_{1}, m_{2}\right)} \sigma_{r}^{2}}
$$

Decomposition of ω

We multiply the decomposed coefficient tensor with the basis of the projection space to get the decomposition

$$
\begin{aligned}
\Pi \omega(\xi) & =\sum_{r=1}^{\min \left(m_{1}, m_{2}\right)} \sigma_{r}\left(\sum_{i_{1}=1}^{m_{1}}\left(u_{r}\right)_{i_{1}} \bar{B}_{i_{1}}\left(\xi_{1}\right)\right)\left(\sum_{i_{2}=1}^{m_{2}}\left(v_{r}\right)_{i_{2}} \bar{B}_{i_{2}}\left(\xi_{2}\right)\right) \\
& =\sum_{r=1}^{\min \left(m_{1}, m_{2}\right)} \mathcal{U}_{r}\left(\xi_{1}\right) \mathcal{V}_{r}\left(\xi_{2}\right)
\end{aligned}
$$

Error estimate for the low rank approximation

Lemma
The rank R-approximation

$$
\Lambda_{R} \omega(\xi)=\sum_{r=1}^{R} \mathcal{U}_{r}\left(\xi_{1}\right) \mathcal{V}_{r}\left(\xi_{2}\right)
$$

fulfils

$$
\left\|\Pi \omega-\Lambda_{R} \omega\right\|_{L^{\infty}(\hat{\Omega})} \leq\left\|W-W_{R}\right\|_{F}=\sqrt{\sum_{r=R+1}^{\min \left(m_{1}, m_{2}\right)} \sigma_{r}^{2}}
$$

Thus for a given accuracy ϵ_{Λ} we can choose the smallest rank R such that the approximation error is below ϵ_{Λ}.

Assembly of the matrices

The entries of approximated mass matrix are

$$
M_{i j} \approx \bar{M}_{i j}=\sum_{r=1}^{R} \int_{0}^{1} \mathcal{U}_{r}\left(\xi_{1}\right) \hat{B}_{i_{1}}\left(\xi_{1}\right) \hat{B}_{j_{1}}\left(\xi_{1}\right) \mathrm{d} \xi_{1} \cdot \int_{0}^{1} \mathcal{V}_{r}\left(\xi_{2}\right) \hat{B}_{i_{2}}\left(\xi_{2}\right) \hat{B}_{j_{2}}\left(\xi_{2}\right) \mathrm{d} \xi_{2}
$$

and thus \bar{M} can be written in the Kronecker format

$$
\bar{M}=\sum_{r=1}^{R} X_{r} \otimes Y_{r}
$$

where each X_{r} is a $n_{1} \times n_{1}$ and Y_{r} a $n_{2} \times n_{2}$-matrix containing the univariate integrals.
For the stiffness matrix we can proceed in the same way.

Computational complexity

We assume $n_{1}=n_{2}=n, m_{1}=m_{2}=m, p_{1}=p_{2}=p$ and $q_{1}=q_{2}=q$.

- The complexity is bounded from below by the number of non-zeros in the matrix, which is $O\left(n^{2} p^{2}\right)$.
- The complexity of computing the matrix SVD up to rank R is $O\left(R m^{2}\right)$.
- For assembling the matrices X_{r} and Y_{r} using univariate element-wise Gauss quadrature the complexity is $O\left(R n p^{3}\right)$
- The complexity for computing the Kronecker sum $\sum_{r=1}^{R} X_{r} \otimes Y_{r}$ is $O\left(R n^{2} p^{2}\right)$.
Since generally $n \gg p$, the overall complexity is dominated by the last step and is thus $O\left(R n^{2} p^{2}\right)$.

Numerical examples

For the method to be efficient we need to be able to choose the rank low.

Table: Rank values for accuracy $\epsilon_{\Lambda}=\epsilon_{\Pi}=10^{-8}$

n	2×3	2×3	5×5	8×8
p	$(1,2)$	$(1,2)$	$(4,4)$	$(7,7)$
$\operatorname{rank}(\omega)$	1	1	7	8
$\operatorname{rank}(K)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right)$	$\left(\begin{array}{cc}17 & 17 \\ 17 & 17\end{array}\right)$	$\left(\begin{array}{cc}14 & 18 \\ 18 & 15\end{array}\right)$

Numerical examples

(a) Quarter annulus, $p=2$

(b) 2nd Coons surface (star), $p=7$

Figure: Comparison of computation times for the stiffness matrix using the decomposition method and an element-wise Gauss method.

Numerical examples

Figure: Comparison of the p-Dependence of the computation times for the stiffness matrix using the decomposition method and an element-wise Gauss method. Computed on the quarter annulus with $400 \times 400=160000$ DOF.

Generalisation to arbitrary dimensions

- The tensor decomposition method can be generalised to arbitrary dimensions since any d-tensor $T \in \mathbb{W}_{\left(n_{1}, \ldots, n_{d}\right)}$ possesses a canonical representation

$$
T=\sum_{r=1}^{R} v_{1}^{r} \otimes v_{2}^{r} \otimes \ldots \otimes v_{d}^{r}
$$

where $v_{k}^{r} \in \mathbb{R}^{n_{k}}$.

- However, the truncation operator

$$
\Lambda_{R} T=\underset{\operatorname{rank}(U) \leq R}{\operatorname{argmin}}\|T-U\|_{2}
$$

leads to a non-linear optimisation problem.

