Analysis-suitable adaptive T-mesh refinement with linear complexity (by [Morgenstern & Peterseim, 2015])

Andreas Schafelner

Johannes Kepler Universität Linz

January 19, 2017

A. Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

January 19, 2017 1 / 35

References

 BEIRÃO DA VEIGA, L., BUFFA, A., SANGALLI, G., AND VÁZQUEZ, R. Analysis-suitable t-splines of arbitrary degree: Definition, linear independence and approximation properties.

Mathematical Models and Methods in Applied Sciences 23, 11 (2013), 1979–2003.

- [2] CARSTENSEN, C., FEISCHL, M., PAGE, M., AND PRAETORIUS, D. Axioms of adaptivity. Computers & Mathematics with Applications 67, 6 (2014), 1195 – 1253.
- [3] DA VEIGA, L. B., BUFFA, A., SANGALLI, G., AND VÁZQUEZ, R. Mathematical analysis of variational isogeometric methods. *Acta Numerica 23* (005 2014), 157–287.
- [4] LI, X., AND SCOTT, M. A. Analysis-suitable t-splines: Characterization, refineability, and approximation. Mathematical Models and Methods in Applied Sciences 24, 06 (2014), 1141–1164.
- [5] MORGENSTERN, P., AND PETERSEIM, D.

Analysis-suitable adaptive t-mesh refinement with linear complexity. Computer Aided Geometric Design 34 (2015), 50 – 66.

Overview

- Adaptive mesh-refinement
- 2 Analysis-suitability
- The overlay
- In the second second
- Sinear complexity

3

< 回 ト < 三 ト < 三 ト

T-splines can be used for local refinement, but in general the T-splines are not linearly independent. To have this property, we need *analysis-suitable* T-meshes.

The proposed refinement algorithm provides the following

- the preservation of analysis-suitablity and nestedness of the generated T-spline spaces,
- a bounded cardinality of the overlay,
- Iinear computational complexity of the refinement procedure.

不同下 不至下 不至下

Adaptive mesh refinement

We consider only a 2D-index domain, as the physical domain can be obtained via a suitable mapping.

Definition 1 (Initial mesh, element).

Given positive numbers $M, N \in \mathbb{N}$, the initial mesh \mathcal{G}_0 is a tensor product mesh consisting of closed squares (also denoted elements) with side length 1, i.e.

$$\mathcal{G}_0 := \left\{ [m-1,m] \times [n-1,n] : m \in \{1,\dots,M\}, n \in \{1,\dots,N\} \right\}$$

Definition 2.

The level of an element K is defined by

$$\ell(K) := -\log_2 |K|$$

A. Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

(p,q)-patches

Definition 3.

Given an element K and polynomial degrees p and q, the (p,q)-patch is defined by

$$\mathcal{G}^{p,q}(K) := \{ K \in \mathcal{G} : \text{Dist}(K',K) \le \mathbf{D}^{p,q}(l(K)) \}$$

with

$$\boldsymbol{D}^{p,q}(k) := \begin{cases} 2^{-k/2} (\lfloor \frac{p}{2} \rfloor + \frac{1}{2}, \lceil \frac{q}{2} \rceil + \frac{1}{2}) \text{if } k \text{ is even} \\ 2^{-(k+1)/2} (\lceil \frac{p}{2} \rceil + \frac{1}{2}, 2\lfloor \frac{q}{2} \rfloor + 1) \text{if } k \text{ is odd} \end{cases}$$

Note that Dist(K', K) is the vector-valued distance between the midpoints of K' and K.

3

Example for a (p,q)-patch

Refining an element

From now on, we assume $p, q \geq 2$. This ensures that neighbouring elements of K are always in $\mathcal{G}^{p,q}(K)$ and nested elements $K \subseteq \hat{K}$ have nested (p,q)-patches, i.e. $\mathcal{G}^{p,q}(K) \subseteq \mathcal{G}^{p,q}(\hat{K})$.

Definition 4.

Given an arbitrary element $K=[\mu,\mu+\tilde{\mu}]\times[\nu,\nu+\tilde{\nu}],$ we define the operators

$$\operatorname{bisect}_{x}(K) := [\mu, \mu + \frac{\tilde{\mu}}{2}] \times [\nu, \nu + \tilde{\nu}], [\mu + \frac{\tilde{\mu}}{2}, \mu + \tilde{\mu}] \times [\nu, \nu + \tilde{\nu}]$$

and

$$\operatorname{bisect}_{y}(K) := [\mu, \mu + \tilde{\mu}] \times [\nu, \nu + \frac{\tilde{\nu}}{2}], [\mu, \mu + \tilde{\mu}] \times [\nu + \frac{\tilde{\nu}}{2}, \nu + \tilde{\nu}].$$

Definition 5 (Bisection, Multiple bisections).

Given a mesh \mathcal{G} and an element $K \in \mathcal{G}$, we denote by $\operatorname{bisect}(\mathcal{G}, K)$ the mesh that results from a level dependent bisection of K,

$$\operatorname{bisect}(\mathcal{G}, K) := \mathcal{G} \setminus K \cup \operatorname{child}(K),$$

with

$$\mathsf{child}(K) := \begin{cases} \mathrm{bisect}_x(K), \text{ if } \ell(K) \text{ is even} \\ \mathrm{bisect}_y(K), \text{ if } \ell(K) \text{ is odd} \end{cases}$$

The bisection of multiple elements $\mathcal{M} \subseteq \mathcal{G}$ is defined by successive bisections in an arbitrary order, i.e.

 $\operatorname{bisect}(\mathcal{G}, \mathcal{M}) := \operatorname{bisect}(\operatorname{bisect}(\ldots \operatorname{bisect}(\mathcal{G}, K_1)), K_J).$

A. Schafelner (JKU Linz)

A superset

Now we can define our refinement algorithm but first need some superset of $\ensuremath{\mathcal{M}}.$

Algorithm (Closure).

Given a mesh \mathcal{G} and a set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ to be bisected, the closure $\operatorname{clos}_{\mathcal{G}}^{p,q}(\mathcal{M})$ of \mathcal{M} is computed as follows

$$\tilde{\mathcal{M}}:=\mathcal{M}$$

repeat

for all $K \in \tilde{\mathcal{M}}$ do $\widetilde{\mathcal{M}} := \tilde{\mathcal{M}} \cup \{K' \in \mathcal{G}^{p,q}(K) : l(K') < l(K)\}$ end for until $\widetilde{\mathcal{M}}$ stops growing return $\operatorname{clos}_{\mathcal{G}}^{p,q}(\mathcal{M}) = \widetilde{\mathcal{M}}$

The refinement algorithm

Algorithm (*Refinement*).

Given a mesh \mathcal{G} and a set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ to be bisected, $\operatorname{ref}^{p,q}(\mathcal{G},\mathcal{M})$ is defined by

$$\operatorname{ref}^{p,q}(\mathcal{G},\mathcal{M}) := \operatorname{bisect}(\mathcal{G},\operatorname{clos}^{p,q}_{\mathcal{G}}(\mathcal{M})).$$

In the following examples, the polynomial degrees are p = q = 3 and M = 4, N = 5.

- 32

イロト 不得下 イヨト イヨト

Examples

- 2

Examples

- 2

Examples

3

The algorithm

The concept of admissibility

Definition 6 ((p,q)-admissible bisections).

Given a mesh \mathcal{G} and an element $K \in \mathcal{G}$, the bisection of K is called (p,q)-admissible if all $K' \in \mathcal{G}^{p,q}$ satisfy $l(K') \ge l(K)$. In the case of several elements $\mathcal{M} = \{K_1, \ldots, K_J\} \subseteq \mathcal{G}$, the bisection bisect(\mathcal{G}, \mathcal{M}) is (p,q)-admissible if there is an order ($\sigma(1), \ldots, \sigma(J)$) (this is, if there is a permutation σ of $1, \ldots, J$ such that

$$\operatorname{bisect}(G, M) = \operatorname{bisect}(\operatorname{bisect}(\dots \operatorname{bisect}(\mathcal{G}, K_{\sigma(1)}), \dots), K_{\sigma(J)})$$

is a concatenation of (p,q)-admissible bisections.

イロト イポト イヨト イヨト 二日

Definition 7 (Admissible refinement).

A refinement \mathcal{G} of \mathcal{G}_0 is (p,q)-admissible if there is a sequence of meshes $\mathcal{G}_1, \ldots, \mathcal{G}_J = \mathcal{G}$ and markings $\mathcal{M}_j \subseteq \mathcal{G}_j$ for $j = 0, \ldots, J - 1$, such that $\mathcal{G}_{j+1} = \operatorname{bisect}(\mathcal{G}_j, \mathcal{M}_j)$ is a (p,q)-admissible bisection for all $j = 0, \ldots, J - 1$. The set of all (p,q)-admissible meshes, which is the initial mesh and all its admissible refinements, is denoted by $\mathbb{A}^{p,q}$.

・聞き くほき くほき 二日

Preservance of admissibility

Lemma 8 (Local quasi-uniformity).

Given $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, any $K' \in \mathcal{G}^{p,q}(K)$ satisfies $\ell(K') \ge \ell(K) - 1$.

Proof.

See [5].

Proposition 9.

Any admissible mesh \mathcal{G} and any set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ satisfy $\operatorname{ref}^{p,q}(\mathcal{G},\mathcal{M}) \in \mathbb{A}^{p,q}$.

Proof.

By induction and with Lemma 8. For details, see [5].

A. Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

3

(日) (同) (三) (三)

Analysis-suitability

To ensure that the T-spline blending functions of a refined mesh are still linearly independent, we need the concept of analysis-suitable meshes.

Definition 10.

Consider an admissible mesh $\mathcal{G} \in \mathbb{A}^{p,q}$. The set of vertices of \mathcal{G} is denoted by \mathcal{N} . We define the active region

$$\mathcal{AR} := \left[\left\lceil \frac{p}{2} \right\rceil, M - \left\lceil \frac{p}{2} \right\rceil \right] \times \left[\left\lceil \frac{q}{2} \right\rceil, N - \left\lceil \frac{q}{2} \right\rceil \right]$$

and the set of active nodes $\mathcal{N}_A := \mathcal{N} \cap \mathcal{AR}$

Definition 11.

We denote by hSk (resp. vSk) the horizontal (resp. vertical) skeleton, which is the union of all horizontal (resp. vertical) edges. Note that $hSk \cap vSk = \mathcal{N}$.

Definition 12 (T-junction extension).

Denote by $\mathcal{T} \subset \mathcal{N}_A$ the set of all active nodes with valence three and refer to them as T-junctions. Consider a T-junction $T = (t_1, t_2) \in \mathcal{T}$ of type \dashv . Clearly, t_1 is one of the entries of $\mathbf{X}(t_2)$. Then extract from $\mathbf{X}(t_2)$ the p+1 consecutive indices $i_{-\lfloor p/2 \rfloor}, \ldots, i_{\lceil p/2 \rceil}$ such that $i_0 = t_1$. We denote

$$\operatorname{ext}_{e}^{p,q}(T) := [i_{-\lfloor p/2 \rfloor}, i_{0}] \times \{t_{2}\}, \qquad \operatorname{ext}_{f}^{p,q}(T) := (i_{0}, i_{\lceil p/2 \rceil}] \times \{t_{2}\},$$

$$\operatorname{ext}^{p,q}(T) := \operatorname{ext}_f^{p,q}(T) \cup \operatorname{ext}_e^{p,q}(T).$$

Here $X(y) := \{z \in [0, M] : (z, y) \in vSk\}$ is a global index set (analogous definition for the x-direction).

Definition 13 (Analysis-suitability).

A mesh is analysis-suitable if horizontal T-junction extensions do not intersect vertical T-junction extensions.

イロト 不得下 イヨト イヨト

Definition 12 (T-junction extension).

Denote by $\mathcal{T} \subset \mathcal{N}_A$ the set of all active nodes with valence three and refer to them as T-junctions. Consider a T-junction $T = (t_1, t_2) \in \mathcal{T}$ of type \dashv . Clearly, t_1 is one of the entries of $\mathbf{X}(t_2)$. Then extract from $\mathbf{X}(t_2)$ the p+1 consecutive indices $i_{-\lfloor p/2 \rfloor}, \ldots, i_{\lceil p/2 \rceil}$ such that $i_0 = t_1$. We denote

$$\begin{aligned} \operatorname{ext}_{e}^{p,q}(T) &:= [i_{-\lfloor p/2 \rfloor}, i_0] \times \{t_2\}, \qquad \operatorname{ext}_{f}^{p,q}(T) := (i_0, i_{\lceil p/2 \rceil}] \times \{t_2\}, \\ \\ &\operatorname{ext}_{f}^{p,q}(T) := \operatorname{ext}_{f}^{p,q}(T) \cup \operatorname{ext}_{e}^{p,q}(T). \end{aligned}$$

Here $X(y) := \{z \in [0, M] : (z, y) \in vSk\}$ is a global index set (analogous definition for the x-direction).

Definition 13 (Analysis-suitability).

A mesh is analysis-suitable if horizontal T-junction extensions do not intersect vertical T-junction extensions.

3

(日) (周) (三) (三)

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than 2(p+1)(q+1) T-spline basis functions that have a support on K.

Proof. See [3, 1

(日) (同) (三) (三)

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than 2(p+1)(q+1) T-spline basis functions that have a support on K.

Proof. See [3, 1]

(日) (同) (三) (三)

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than 2(p+1)(q+1) T-spline basis functions that have a support on K.

Proof. See [3, 1]

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than 2(p+1)(q+1) T-spline basis functions that have a support on K.

Proof.

See [3, 1]

- 4 回 ト - 4 回 ト

Overlay

To use this algorithm for a posteriori error-driven refinement, we need some theoretical properties on the *overlay*, which is the common coarsest refinement.

Definition 16 (Overlay).

We define the operator ${\rm Min}_\subseteq$ which yields all minimal elements of a set that is partially ordered by " \subseteq ",

$$\operatorname{Min}_{\subseteq}(\mathcal{M}) := \{ K \in \mathcal{M} : \forall K' \in \mathcal{M} : K' \subseteq K \to K' = K \}$$

The overlay of $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ is defined by

$$\mathcal{G}_1 \otimes \mathcal{G}_2 := \operatorname{Min}_{\subseteq} (\mathcal{G}_1 \cup \mathcal{G}_2)$$

- 4 @ > 4 @ > 4 @ >

Proposition 17.

 $\mathcal{G}_1 \otimes \mathcal{G}_2$ is the coarsest refinement of \mathcal{G}_1 and \mathcal{G}_2 in the sense that for any $\hat{\mathcal{G}}$ being a refinement of \mathcal{G}_1 and \mathcal{G}_2 , and $\mathcal{G}_1 \otimes \mathcal{G}_2$ being a refinement of $\hat{\mathcal{G}}$, it follows that $\hat{\mathcal{G}} = \mathcal{G}_1 \otimes \mathcal{G}_2$.

Proof. Blackboard, see [5].

A. Schafelner (JKU Linz)

Proposition 17.

 $\mathcal{G}_1 \otimes \mathcal{G}_2$ is the coarsest refinement of \mathcal{G}_1 and \mathcal{G}_2 in the sense that for any $\hat{\mathcal{G}}$ being a refinement of \mathcal{G}_1 and \mathcal{G}_2 , and $\mathcal{G}_1 \otimes \mathcal{G}_2$ being a refinement of $\hat{\mathcal{G}}$, it follows that $\hat{\mathcal{G}} = \mathcal{G}_1 \otimes \mathcal{G}_2$.

Proof.

Blackboard, see [5].

A. Schafelner (JKU Linz)

Two theoretical properties

Proposition 18.

For any admissible meshes $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$, the overlay $\mathcal{G}_1 \otimes \mathcal{G}_2$ is also admissible.

Lemma 19.

For all $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ holds

 $#(\mathcal{G}_1 \otimes \mathcal{G}_2) + #\mathcal{G}_0 \leq #\mathcal{G}_1 + #\mathcal{G}_2.$

The second property is a assumption in [2].

A. Schafelner (JKU Linz)

3

4 AR & A R & A R &

Nestedness

Now the nesting behaviour of the T-spline spaces corresponding to admissible meshes is investigated (for details, see [5, 4]).

Definition 20.

For any partitions $\mathcal{G}_1, \mathcal{G}_2$ of $\overline{\Omega}$ we introduce the refinement relation " \leq ", which is defined using the overlay

$$\mathcal{G}_1 \preceq \mathcal{G}_2 \Leftrightarrow \mathcal{G}_1 \otimes \mathcal{G}_2 = \mathcal{G}_2$$

Corollary 21.

Denote the skeleton of a mesh \mathcal{G} by $Sk(G) := hSk(G) \cup vSk(G)$. Then for rectangular partitions $\mathcal{G}_1, \mathcal{G}_2$ of $\overline{\Omega}$ holds the equivalence

$\mathcal{G}_1 \preceq \mathcal{G}_2 \Leftrightarrow Sk(\mathcal{G}_1) \subseteq Sk(\mathcal{G}_2)$

イロト 不得下 イヨト イヨト

Nestedness

Now the nesting behaviour of the T-spline spaces corresponding to admissible meshes is investigated (for details, see [5, 4]).

Definition 20.

For any partitions $\mathcal{G}_1, \mathcal{G}_2$ of $\overline{\Omega}$ we introduce the refinement relation " \leq ", which is defined using the overlay

$$\mathcal{G}_1 \preceq \mathcal{G}_2 \Leftrightarrow \mathcal{G}_1 \otimes \mathcal{G}_2 = \mathcal{G}_2$$

Corollary 21.

Denote the skeleton of a mesh ${\mathcal G}$ by $Sk(G):=hSk(G)\cup vSk(G)$. Then for rectangular partitions ${\mathcal G}_1, {\mathcal G}_2$ of $\overline{\Omega}$ holds the equivalence

 $\mathcal{G}_1 \preceq \mathcal{G}_2 \Leftrightarrow Sk(\mathcal{G}_1) \subseteq Sk(\mathcal{G}_2)$

Mesh extension

Definition 22.

Given a rectangular partition \mathcal{G} of $\overline{\Omega}$, denote by $\mathrm{ext}^{p,q}(G)$ the union of all T-junction extensions in the mesh \mathcal{G} . Then the extended mesh $\mathcal{G}^{\mathrm{ext}}$ is defined as the unique rectangular partition of $\overline{\Omega}$ such that

 $Sk(\mathcal{G}^{\text{ext}}) = Sk(\mathcal{G}) \cup \text{ext}^{p,q}(\mathcal{G}).$

Sketch of an extended mesh.

A. Schafelner (JKU Linz)

Mesh perturbation

Definition 23.

Given a partition G of $\overline{\Omega}$ into axis-aligned rectangles, we define by $Ptb(\mathcal{G})$ the set of all continuous and invertible mappings $\delta:\overline{\Omega}\to\overline{\Omega}$ such that the corners (0,0), (M,0), (M,N), (0,N) are fixed points of δ and

 $\delta(\mathcal{G}) = \{\delta(K) : K \in \mathcal{G}\}$

is also a partition of $\overline{\Omega}$ into axis-aligned rectangles.

Note for $\delta \in Ptb(\mathcal{G})$, the corresponding skeleton satisfies $Sk(\delta(\mathcal{G})) = \delta(Sk(\mathcal{G}))$. In general, such a perturbation δ does not map T-junction extensions to the corresponding extensions in the perturbed mesh, i.e.

$$\operatorname{ext}_{\delta(\mathcal{G})}^{p,q}(\delta(T)) \neq \delta(\operatorname{ext}_{\mathcal{G}}^{p,q}(T)).$$

イロト 不得下 イヨト イヨト

Mesh perturbation

Definition 23.

Given a partition G of $\overline{\Omega}$ into axis-aligned rectangles, we define by $Ptb(\mathcal{G})$ the set of all continuous and invertible mappings $\delta:\overline{\Omega}\to\overline{\Omega}$ such that the corners (0,0), (M,0), (M,N), (0,N) are fixed points of δ and

 $\delta(\mathcal{G}) = \{\delta(K) : K \in \mathcal{G}\}$

is also a partition of $\overline{\Omega}$ into axis-aligned rectangles.

Note for $\delta \in Ptb(\mathcal{G})$, the corresponding skeleton satisfies $Sk(\delta(\mathcal{G})) = \delta(Sk(\mathcal{G}))$. In general, such a perturbation δ does not map T-junction extensions to the corresponding extensions in the perturbed mesh, i.e.

$$\operatorname{ext}_{\delta(\mathcal{G})}^{p,q}(\delta(T)) \neq \delta(\operatorname{ext}_{\mathcal{G}}^{p,q}(T)).$$

イロト 不得下 イヨト イヨト 二日

Nestedness

Example for a perturbation.

A. Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

Given two analysis-suitable meshes \mathcal{G}_1 and \mathcal{G}_2 , if for all $\delta \in Ptb(\mathcal{G}_2)$ holds

 $(\delta(\mathcal{G}_1))^{\text{ext}} \preceq (\delta(\mathcal{G}_2))^{\text{ext}}$

then the T-spline spaces corresponding to G_1 and G_2 are nested.

Proof. See [4].

Given two analysis-suitable meshes \mathcal{G}_1 and \mathcal{G}_2 , if for all $\delta \in Ptb(\mathcal{G}_2)$ holds

 $(\delta(\mathcal{G}_1))^{\text{ext}} \preceq (\delta(\mathcal{G}_2))^{\text{ext}}$

then the T-spline spaces corresponding to G_1 and G_2 are nested.

Proof.

See [4].

Theorem 25.

Any two meshes $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ that are nested in the sense $\mathcal{G}_1 \preceq \mathcal{G}_2$ satisfy for all $\delta \in Ptb(\mathcal{G}_2)$

 $(\delta(\mathcal{G}_1))^{\text{ext}} \preceq (\delta(\mathcal{G}_2))^{\text{ext}}.$

Proof.

It is sufficient to show

 $\operatorname{ext}^{p,q}(\delta(\mathcal{G}_1)) \cup Sk(\delta(\mathcal{G}_1)) \subseteq \operatorname{ext}^{p,q}(\delta(\mathcal{G}_2)) \cup Sk(\delta(\mathcal{G}_2)).$

First, let $K \in \mathcal{G}_1 \in \mathbb{A}^{p,q}$ and $\mathcal{G}_2 := \operatorname{bisect}(\mathcal{G}_1)$, then $\mathcal{G}_1 \preceq \mathcal{G}_2 \Rightarrow Sk(\delta(\mathcal{G}_1)) \subseteq Sk(\delta(\mathcal{G}_2))$. The second part includes comparison of different cases. For further details, see [5].

- 3

イロト 不得下 イヨト イヨト

Theorem 25.

Any two meshes $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ that are nested in the sense $\mathcal{G}_1 \preceq \mathcal{G}_2$ satisfy for all $\delta \in Ptb(\mathcal{G}_2)$

 $(\delta(\mathcal{G}_1))^{\text{ext}} \preceq (\delta(\mathcal{G}_2))^{\text{ext}}.$

Proof.

It is sufficient to show

 $\operatorname{ext}^{p,q}(\delta(\mathcal{G}_1)) \cup Sk(\delta(\mathcal{G}_1)) \subseteq \operatorname{ext}^{p,q}(\delta(\mathcal{G}_2)) \cup Sk(\delta(\mathcal{G}_2)).$

First, let $K \in \mathcal{G}_1 \in \mathbb{A}^{p,q}$ and $\mathcal{G}_2 := \operatorname{bisect}(\mathcal{G}_1)$, then $\mathcal{G}_1 \preceq \mathcal{G}_2 \Rightarrow Sk(\delta(\mathcal{G}_1)) \subseteq Sk(\delta(\mathcal{G}_2))$. The second part includes comparison of different cases. For further details, see [5].

- 31

- 4 週 ト - 4 三 ト - 4 三 ト

Combination of these two results gives us:

Corollary 26.

For any two meshes $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ that are nested in the sense $\mathcal{G}_1 \preceq \mathcal{G}_2$, the corresponding T-spline spaces are also nested.

Linear complexity

The following estimate shows that the number of refined elements depends at most linearly on the number of marked elements.

Theorem 27.

Any sequence of admissible meshes $\mathcal{G}_0, \mathcal{G}_1, \dots, \mathcal{G}_J$ with

$$\mathcal{G}_j = \operatorname{ref}^{p,q}(\mathcal{G}_{j-1},\mathcal{M}_{j-1}), \quad \mathcal{M}_{j-1} \subseteq \mathcal{G}_{j-1} \text{ for } j \in \{1,\ldots,J\}$$

satisfies

$$|\mathcal{G}_J \setminus \mathcal{G}_0| \le C_{p,q} \sum_{j=0}^{J-1} |\mathcal{M}_j|$$

with $C_{p,q} = (3 + \sqrt{2})(4d_p + 1)(4d_q + \sqrt{2})$ and

$$d_p = (1 + 2^{-1/2})p + 1 + \frac{5}{4}\sqrt{2}, \quad d_q = (1 + \sqrt{2})q + \frac{3}{2} + \sqrt{2}.$$

A. Schafelner (JKU Linz)

30 / 35

Sketch of proof

One can show the following:

• for $K \in \bigcup \mathbb{A}^{p,q}$ and $\tilde{K} \in \mathcal{M}$, define $\lambda(K, \tilde{K})$ by

 $\lambda(K,\tilde{K}) := \begin{cases} 2^{\ell(K)-\ell(\tilde{K})/2}, \text{ if } \ell(K) \leq \ell(\tilde{K})+1 \text{ and } \operatorname{Dist}(K,\tilde{K}) \leq 2^{1-\ell(K)/2}(d_p,d_q) \\ 0 \text{ otherwise} \end{cases}$

• for all $j \in \{0,...,J-1\}$ and $\tilde{K} \in \mathcal{M}_j$ holds

$$\sum_{K \in \mathcal{G}_J \setminus \mathcal{G}_0} \lambda(K, \tilde{K}) \le (3 + \sqrt{2})(4d_p + 1)(4d_q + \sqrt{2}) = C_{p,q},$$

• each $K \in \mathcal{G}_J \setminus \mathcal{G}_0$ satisfies

$$\sum_{\tilde{K}\in\mathcal{M}}\lambda(K,\tilde{K})\geq 1.$$

Remarks and Examples

- The result of the theorem is not trivial, as there is no uniform bound for the number of generated elements.
- The large constant $C_{p,q}$ was not observed in the numerical experiments by the authors.

Generated and marked elements for randomly refined (3,3)-admissible meshes.

A. Schafelner (JKU Linz)

Observed bounds for higher degrees of (p,q)

p q	2	3	4	5	6	7	8	9
2	5	5	7	7	7	7	8	8
3	6	6	7	7	8	8	9	11
4	7	8	8	8	11	10	10	12
5	7	7	9	10	10	12	11	13
6	7	8	10	10	11	12	12	16
7	8	11	10	13	12	12	16	14
8	9	10	11	17	13	13	15	15
9	9	11	12	14	14	16	16	23

Maximal observed ratios for random refinement.

3

(日) (同) (三) (三)

Observed bounds for higher degrees of (p,q)

p q	2	3	4	5	6	7	8	9
2	24	33	46	56	69	78	91	100
3	33	46	65	78	97	109	128	140
4	46	65	91	110	136	154	179	198
5	56	78	110	132	163	186	216	238
6	69	97	136	164	202	229	268	295
7	78	110	154	186	229	260	304	335
8	91	128	180	217	268	304	355	391
9	100	141	198	239	295	335	391	431

Maximal observed ratios when refining the lower left.

3

(日) (同) (三) (三)

Thank you!

A. Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

January 19, 2017 35

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

35 / 35