Analysis-suitable adaptive T-mesh refinement with linear complexity (by [Morgenstern & Peterseim, 2015])

Andreas Schafelner

Johannes Kepler Universität Linz

January 19, 2017
Analysis-suitable t-splines of arbitrary degree: Definition, linear independence and approximation properties.

Axioms of adaptivity.

Mathematical analysis of variational isogeometric methods.

[4] Li, X., and Scott, M. A.
Analysis-suitable t-splines: Characterization, refineability, and approximation.

Analysis-suitable adaptive t-mesh refinement with linear complexity.
Overview

1. Adaptive mesh-refinement
2. Analysis-suitability
3. The overlay
4. Nestedness
5. Linear complexity
Overview

T-splines can be used for local refinement, but in general the T-splines are not linearly independent. To have this property, we need *analysis-suitable* T-meshes.

The proposed refinement algorithm provides the following:

1. the preservation of analysis-suitability and nestedness of the generated T-spline spaces,
2. a bounded cardinality of the overlay,
3. linear computational complexity of the refinement procedure.
Adaptive mesh refinement

We consider only a 2D-index domain, as the physical domain can be obtained via a suitable mapping.

Definition 1 (Initial mesh, element).
Given positive numbers $M, N \in \mathbb{N}$, the initial mesh G_0 is a tensor product mesh consisting of closed squares (also denoted elements) with side length 1, i.e.

\[
G_0 := \left\{ [m-1,m] \times [n-1,n] : m \in \{1, \ldots, M\}, n \in \{1, \ldots, N\} \right\}.
\]

Definition 2.
The level of an element K is defined by

\[
\ell(K) := - \log_2 |K|
\]
(p,q)-patches

Definition 3.

Given an element K and polynomial degrees p and q, the (p,q)-patch is defined by

$$\mathcal{G}^{p,q}(K) := \{K \in \mathcal{G} : \text{Dist}(K', K) \leq D^{p,q}(l(K))\}$$

with

$$D^{p,q}(k) := \begin{cases} 2^{-k/2}([p/2] + \frac{1}{2}, \lceil q/2 \rceil + \frac{1}{2}) & \text{if } k \text{ is even} \\ 2^{-(k+1)/2}([p/2] + \frac{1}{2}, 2\lceil q/2 \rceil + 1) & \text{if } k \text{ is odd} \end{cases}$$

Note that $\text{Dist}(K', K)$ is the vector-valued distance between the midpoints of K' and K.
Example for a \((p,q)\)-patch
Refining an element

From now on, we assume $p, q \geq 2$. This ensures that neighbouring elements of K are always in $G^{p,q}(K)$ and nested elements $K \subseteq \hat{K}$ have nested (p,q)-patches, i.e. $G^{p,q}(K) \subseteq G^{p,q}(\hat{K})$.

Definition 4.

Given an arbitrary element $K = [\mu, \mu + \tilde{\mu}] \times [\nu, \nu + \tilde{\nu}]$, we define the operators

$$\text{bisect}_x(K) := [\mu, \mu + \frac{\tilde{\mu}}{2}] \times [\nu, \nu + \tilde{\nu}], [\mu + \frac{\tilde{\mu}}{2}, \mu + \tilde{\mu}] \times [\nu, \nu + \tilde{\nu}]$$

and

$$\text{bisect}_y(K) := [\mu, \mu + \tilde{\mu}] \times [\nu, \nu + \frac{\tilde{\nu}}{2}], [\mu, \mu + \tilde{\mu}] \times [\nu + \frac{\tilde{\nu}}{2}, \nu + \tilde{\nu}]$$.
Definition 5 (Bisection, Multiple bisections).

Given a mesh \mathcal{G} and an element $K \in \mathcal{G}$, we denote by $\text{bisect}(\mathcal{G}, K)$ the mesh that results from a level dependent bisection of K,

$$\text{bisect}(\mathcal{G}, K) := \mathcal{G} \setminus K \cup \text{child}(K),$$

with

$$\text{child}(K) := \begin{cases}
\text{bisect}_x(K), & \text{if } \ell(K) \text{ is even} \\
\text{bisect}_y(K), & \text{if } \ell(K) \text{ is odd}
\end{cases}.$$

The bisection of multiple elements $\mathcal{M} \subseteq \mathcal{G}$ is defined by successive bisections in an arbitrary order, i.e.

$$\text{bisect}(\mathcal{G}, \mathcal{M}) := \text{bisect}(\text{bisect}(\ldots \text{bisect}(\mathcal{G}, K_1)), K_J).$$
Now we can define our refinement algorithm but first need some superset of \mathcal{M}.

Algorithm (Closure).

Given a mesh \mathcal{G} and a set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ to be bisected, the closure $\text{clos}^{p,q}_{\mathcal{G}}(\mathcal{M})$ of \mathcal{M} is computed as follows

$$\tilde{\mathcal{M}} := \mathcal{M}$$

repeat

for all $K \in \tilde{\mathcal{M}}$ do

$$\tilde{\mathcal{M}} := \tilde{\mathcal{M}} \cup \{K' \in \mathcal{G}^{p,q}(K) : l(K') < l(K)\}$$

end for

until $\tilde{\mathcal{M}}$ stops growing

return $\text{clos}^{p,q}_{\mathcal{G}}(\mathcal{M}) = \tilde{\mathcal{M}}$
The refinement algorithm

Algorithm (*Refinement*).

Given a mesh \mathcal{G} and a set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ to be bisected, $\text{ref}^{p,q}(\mathcal{G}, \mathcal{M})$ is defined by

$$\text{ref}^{p,q}(\mathcal{G}, \mathcal{M}) := \text{biset}(\mathcal{G}, \text{clos}^{p,q}_G(\mathcal{M})).$$

In the following examples, the polynomial degrees are $p = q = 3$ and $M = 4, N = 5$.
Examples
Examples
Definition 6 \(((p, q)\text{-admissible bisections})\).
Given a mesh \(G\) and an element \(K \in G\), the bisection of \(K\) is called \((p,q)\text{-admissible}\) if all \(K' \in G^{p,q}\) satisfy \(l(K') \geq l(K)\).
In the case of several elements \(M = \{K_1, \ldots, K_J\} \subseteq G\), the bisection \(\text{bisect}(G, M)\) is \((p,q)\text{-admissible}\) if there is an order \((\sigma(1), \ldots, \sigma(J))\) (this is, if there is a permutation \(\sigma\) of \(1, \ldots, J\)) such that

\[
\text{bisect}(G, M) = \text{bisect}(... \text{bisect}(G, K_{\sigma(1)}), ...) , K_{\sigma(J)})
\]
is a concatenation of \((p,q)\text{-admissible bisections})\.
Definition 7 (Admissible refinement).

A refinement G of G_0 is (p,q)-admissible if there is a sequence of meshes $G_1, \ldots, G_J = G$ and markings $M_j \subseteq G_j$ for $j = 0, \ldots, J - 1$, such that $G_{j+1} = \text{bisection}(G_j, M_j)$ is a (p,q)-admissible bisection for all $j = 0, \ldots, J - 1$. The set of all (p,q)-admissible meshes, which is the initial mesh and all its admissible refinements, is denoted by $\mathbb{A}^{p,q}$.
Preservance of admissibility

Lemma 8 (Local quasi-uniformity).

Given $K \in \mathcal{G} \in A^{p,q}$, any $K' \in \mathcal{G}^{p,q}(K)$ satisfies $\ell(K') \geq \ell(K) - 1$.

Proof.
See [5].

Proposition 9.

Any admissible mesh \mathcal{G} and any set of marked elements $\mathcal{M} \subseteq \mathcal{G}$ satisfy $\text{ref}^{p,q}(\mathcal{G}, \mathcal{M}) \in A^{p,q}$.

Proof.
By induction and with Lemma 8. For details, see [5].
Analysis-suitability

To ensure that the T-spline blending functions of a refined mesh are still linearly independent, we need the concept of analysis-suitable meshes.

Definition 10.

Consider an admissible mesh \(G \in A^{p,q} \). The set of vertices of \(G \) is denoted by \(N \). We define the active region

\[
AR := \left[\left\lceil \frac{p}{2} \right\rceil, M - \left\lceil \frac{p}{2} \right\rceil \right] \times \left[\left\lceil \frac{q}{2} \right\rceil, N - \left\lceil \frac{q}{2} \right\rceil \right]
\]

and the set of active nodes \(N_A := N \cap AR \).

Definition 11.

We denote by \(hSk \) (resp. \(vSk \)) the horizontal (resp. vertical) skeleton, which is the union of all horizontal (resp. vertical) edges. Note that \(hSk \cap vSk = N \).

\(A. \) Schafelner (JKU Linz)

A.S. adaptive T-mesh refinement

January 19, 2017 17 / 35
Definition 12 (T-junction extension).

Denote by $\mathcal{T} \subset \mathcal{N}_A$ the set of all active nodes with valence three and refer to them as T-junctions. Consider a T-junction $T = (t_1, t_2) \in \mathcal{T}$ of type \dashv. Clearly, t_1 is one of the entries of $X(t_2)$. Then extract from $X(t_2)$ the $p+1$ consecutive indices $i_{-\lceil p/2 \rceil}, \ldots, i_{\lceil p/2 \rceil}$ such that $i_0 = t_1$. We denote

$$
\text{ext}^p_q(T) := [i_{-\lceil p/2 \rceil}, i_0] \times \{t_2\}, \quad \text{ext}^p_f(T) := (i_0, i_{\lceil p/2 \rceil}] \times \{t_2\},
$$

$$
\text{ext}^p_q(T) := \text{ext}^p_f(T) \cup \text{ext}^p_q(T).
$$

Here $X(y) := \{z \in [0, M] : (z, y) \in vSk\}$ is a global index set (analogous definition for the x-direction).

Definition 13 (Analysis-suitality).

A mesh is analysis-suitable if horizontal T-junction extensions do not intersect vertical T-junction extensions.
Definition 12 (T-junction extension).

Denote by $\mathcal{T} \subset \mathcal{N}_A$ the set of all active nodes with valence three and refer to them as T-junctions. Consider a T-junction $T = (t_1, t_2) \in \mathcal{T}$ of type \vdash. Clearly, t_1 is one of the entries of $X(t_2)$. Then extract from $X(t_2)$ the $p + 1$ consecutive indices $i_{\lfloor p/2 \rfloor}, \ldots, i_{\lceil p/2 \rceil}$ such that $i_0 = t_1$. We denote

$$
\text{ext}_{e}^{p,q}(T) := [i_{\lfloor p/2 \rfloor}, i_0] \times \{t_2\},
$$

$$
\text{ext}_{f}^{p,q}(T) := (i_0, i_{\lceil p/2 \rceil}] \times \{t_2\},
$$

$$
\text{ext}^{p,q}(T) := \text{ext}_{f}^{p,q}(T) \cup \text{ext}_{e}^{p,q}(T).
$$

Here $X(y) := \{z \in [0, M] : (z, y) \in vSk\}$ is a global index set (analogous definition for the x-direction).

Definition 13 (Analysis-suitability).

A mesh is analysis-suitable if horizontal T-junction extensions do not intersect vertical T-junction extensions.
Theorem 14.

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \Delta^{p,q}$, *there are not more than* $2(p + 1)(q + 1)$ *T-spline basis functions that have a support on* K.

Proof.

See [3, 1]
Theorem 14.
All admissible meshes are analysis suitable.

Proof.
By induction over admissible bisections. For details, see [5].

Corollary 15.
All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in G \in \mathbb{A}^{p,q}$, there are not more than $2(p + 1)(q + 1)$ T-spline basis functions that have a support on K.

Proof.
See [3, 1]
Theorem 14.

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

*All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than $2(p + 1)(q + 1)$ T-spline basis functions that have a support on K.***

Proof.

See [3, 1]
Theorem 14.

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are non-negative, linearly independent, and form a partition of unity. Moreover, on each element $K \in \mathcal{G} \in \mathbb{A}^{p,q}$, there are not more than $2(p + 1)(q + 1)$ T-spline basis functions that have a support on K.

Proof.

See [3, 1]
To use this algorithm for a posteriori error-driven refinement, we need some theoretical properties on the overlay, which is the common coarsest refinement.

Definition 16 (Overlay).
We define the operator Min_{\subseteq} which yields all minimal elements of a set that is partially ordered by "\subseteq",

$$\text{Min}_{\subseteq}(\mathcal{M}) := \{K \in \mathcal{M} : \forall K' \in \mathcal{M} : K' \subseteq K \rightarrow K' = K\}$$

The overlay of $\mathcal{G}_1, \mathcal{G}_2 \in \mathbb{A}^{p,q}$ is defined by

$$\mathcal{G}_1 \otimes \mathcal{G}_2 := \text{Min}_{\subseteq}(\mathcal{G}_1 \cup \mathcal{G}_2)$$
Proposition 17.

$G_1 \otimes G_2$ is the coarsest refinement of G_1 and G_2 in the sense that for any \hat{G} being a refinement of G_1 and G_2, and $G_1 \otimes G_2$ being a refinement of \hat{G}, it follows that $\hat{G} = G_1 \otimes G_2$.

Proof.

Blackboard, see [5].
Proposition 17.

$G_1 \otimes G_2$ is the coarsest refinement of G_1 and G_2 in the sense that for any \hat{G} being a refinement of G_1 and G_2, and $G_1 \otimes G_2$ being a refinement of \hat{G}, it follows that $\hat{G} = G_1 \otimes G_2$.

Proof.

Blackboard, see [5].
Two theoretical properties

Proposition 18.
For any admissible meshes $G_1, G_2 \in \mathbb{A}^{p,q}$, the overlay $G_1 \otimes G_2$ is also admissible.

Lemma 19.
For all $G_1, G_2 \in \mathbb{A}^{p,q}$ holds

$$\#(G_1 \otimes G_2) + \#G_0 \leq \#G_1 + \#G_2.$$

The second property is an assumption in [2].
Now the nesting behaviour of the T-spline spaces corresponding to admissible meshes is investigated (for details, see [5, 4]).

Definition 20.

For any partitions G_1, G_2 of $\bar{\Omega}$ we introduce the refinement relation “\leq”, which is defined using the overlay

$$G_1 \leq G_2 \iff G_1 \otimes G_2 = G_2$$

Corollary 21.

Denote the skeleton of a mesh G by $Sk(G) := hSk(G) \cup vSk(G)$. Then for rectangular partitions G_1, G_2 of $\bar{\Omega}$ holds the equivalence

$$G_1 \leq G_2 \iff Sk(G_1) \subseteq Sk(G_2)$$
Nestedness

Now the nesting behaviour of the T-spline spaces corresponding to admissible meshes is investigated (for details, see [5, 4]).

Definition 20.

For any partitions G_1, G_2 of $\overline{\Omega}$ we introduce the refinement relation \leq, which is defined using the overlay

$$G_1 \preceq G_2 \iff G_1 \otimes G_2 = G_2$$

Corollary 21.

Denote the skeleton of a mesh G by $Sk(G) := hSk(G) \cup vSk(G)$. Then for rectangular partitions G_1, G_2 of $\overline{\Omega}$ holds the equivalence

$$G_1 \preceq G_2 \iff Sk(G_1) \subseteq Sk(G_2)$$
Definition 22.

Given a rectangular partition \mathcal{G} of $\overline{\Omega}$, denote by $\text{ext}^{p,q}(\mathcal{G})$ the union of all T-junction extensions in the mesh \mathcal{G}. Then the extended mesh \mathcal{G}^{ext} is defined as the unique rectangular partition of $\overline{\Omega}$ such that

$$Sk(\mathcal{G}^{\text{ext}}) = Sk(\mathcal{G}) \cup \text{ext}^{p,q}(\mathcal{G}).$$

Sketch of an extended mesh.
Definition 23.

Given a partition G of $\overline{\Omega}$ into axis-aligned rectangles, we define by $Ptb(G)$ the set of all continuous and invertible mappings $\delta : \overline{\Omega} \rightarrow \overline{\Omega}$ such that the corners $(0,0), (M,0), (M,N), (0,N)$ are fixed points of δ and

$$\delta(G) = \{ \delta(K) : K \in G \}$$

is also a partition of $\overline{\Omega}$ into axis-aligned rectangles.

Note for $\delta \in Ptb(G)$, the corresponding skeleton satisfies $Sk(\delta(G)) = \delta(Sk(G))$. In general, such a perturbation δ does not map T-junction extensions to the corresponding extensions in the perturbed mesh, i.e.

$$ext_{\delta(G)}^{p,q}(\delta(T)) \neq \delta(ext_{G}^{p,q}(T)).$$
Mesh perturbation

Definition 23.

Given a partition G of $\overline{\Omega}$ into axis-aligned rectangles, we define by $Ptb(G)$ the set of all continuous and invertible mappings $\delta : \overline{\Omega} \to \overline{\Omega}$ such that the corners $(0, 0), (M, 0), (M, N), (0, N)$ are fixed points of δ and

$$\delta(G) = \{ \delta(K) : K \in G \}$$

is also a partition of $\overline{\Omega}$ into axis-aligned rectangles.

Note for $\delta \in Ptb(G)$, the corresponding skeleton satisfies $Sk(\delta(G)) = \delta(Sk(G))$. In general, such a perturbation δ does not map T-junction extensions to the corresponding extensions in the perturbed mesh, i.e.

$$\text{ext}_{\delta(G)}^{p,q}(\delta(T)) \neq \delta(\text{ext}_{G}^{p,q}(T)).$$
Example for a perturbation.
Theorem 24.

Given two analysis-suitable meshes G_1 and G_2, if for all $\delta \in Ptb(G_2)$ holds

$$(\delta(G_1))^{\text{ext}} \preceq (\delta(G_2))^{\text{ext}}$$

then the T-spline spaces corresponding to G_1 and G_2 are nested.

Proof.

See [4].
Theorem 24.

Given two analysis-suitable meshes G_1 and G_2, if for all $\delta \in \text{Pt}(G_2)$ holds

$$ (\delta(G_1))^{\text{ext}} \preceq (\delta(G_2))^{\text{ext}} $$

then the T-spline spaces corresponding to G_1 and G_2 are nested.

Proof.

See [4].
Theorem 25.

Any two meshes $G_1, G_2 \in \mathbb{A}^{p,q}$ that are nested in the sense $G_1 \preceq G_2$ satisfy for all $\delta \in \text{Ptb}(G_2)$

$$(\delta(G_1))^{\text{ext}} \preceq (\delta(G_2))^{\text{ext}}.$$

Proof.

It is sufficient to show

$$\text{ext}^{p,q}(\delta(G_1)) \cup \text{Sk}(\delta(G_1)) \subseteq \text{ext}^{p,q}(\delta(G_2)) \cup \text{Sk}(\delta(G_2)).$$

First, let $K \in G_1 \in \mathbb{A}^{p,q}$ and $G_2 := \text{biset}(G_1)$, then $G_1 \preceq G_2 \Rightarrow \text{Sk}(\delta(G_1)) \subseteq \text{Sk}(\delta(G_2))$.

The second part includes comparison of different cases. For further details, see [5].
Theorem 25.

Any two meshes $G_1, G_2 \in \mathbb{A}^{p,q}$ that are nested in the sense $G_1 \preceq G_2$ satisfy for all $\delta \in Ptb(G_2)$

$$\left(\delta(G_1)\right)^{ext} \preceq \left(\delta(G_2)\right)^{ext}.$$

Proof.

It is sufficient to show

$$\text{ext}^{p,q}(\delta(G_1)) \cup Sk(\delta(G_1)) \subseteq \text{ext}^{p,q}(\delta(G_2)) \cup Sk(\delta(G_2)).$$

First, let $K \in G_1 \in \mathbb{A}^{p,q}$ and $G_2 := \text{bise}t(G_1)$, then

$G_1 \preceq G_2 \Rightarrow Sk(\delta(G_1)) \subseteq Sk(\delta(G_2)).$

The second part includes comparison of different cases. For further details, see [5].
Combination of these two results gives us:

Corollary 26.

For any two meshes \(G_1, G_2 \in \mathbb{A}^{p,q} \) that are nested in the sense \(G_1 \preceq G_2 \), the corresponding T-spline spaces are also nested.
Linear complexity

The following estimate shows that the number of refined elements depends at most linearly on the number of marked elements.

Theorem 27.

Any sequence of admissible meshes G_0, G_1, \ldots, G_J with

$$G_j = \text{ref}^{p,q}(G_{j-1}, M_{j-1}), \quad M_{j-1} \subseteq G_{j-1} \text{ for } j \in \{1, \ldots, J\}$$

satisfies

$$|G_J \setminus G_0| \leq C_{p,q} \sum_{j=0}^{J-1} |M_j|$$

with $C_{p,q} = (3 + \sqrt{2})(4d_p + 1)(4d_q + \sqrt{2})$ and

$$d_p = (1 + 2^{-1/2})p + 1 + \frac{5}{4}\sqrt{2}, \quad d_q = (1 + \sqrt{2})q + \frac{3}{2} + \sqrt{2}.$$
Sketch of proof

One can show the following:

- for $K \in \bigcup A^{p,q}$ and $\tilde{K} \in \mathcal{M}$, define $\lambda(K, \tilde{K})$ by
 $$\lambda(K, \tilde{K}) := \begin{cases} 2^{\ell(K) - \ell(\tilde{K})/2}, & \text{if } \ell(K) \leq \ell(\tilde{K}) + 1 \text{ and } \text{Dist}(K, \tilde{K}) \leq 2^{1 - \ell(K)/2}(d_p, d_q) \\ 0 & \text{otherwise} \end{cases}$$

- for all $j \in \{0, \ldots, J - 1\}$ and $\tilde{K} \in \mathcal{M}_j$ holds
 $$\sum_{K \in \mathcal{G}_J \setminus \mathcal{G}_0} \lambda(K, \tilde{K}) \leq (3 + \sqrt{2})(4d_p + 1)(4d_q + \sqrt{2}) = C_{p,q},$$

- each $K \in \mathcal{G}_J \setminus \mathcal{G}_0$ satisfies
 $$\sum_{\tilde{K} \in \mathcal{M}} \lambda(K, \tilde{K}) \geq 1.$$
Remarks and Examples

- The result of the theorem is not trivial, as there is no uniform bound for the number of generated elements.
- The large constant $C_{p,q}$ was not observed in the numerical experiments by the authors.

Generated and marked elements for randomly refined (3,3)-admissible meshes.
Observed bounds for higher degrees of \((p,q)\)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>23</td>
</tr>
</tbody>
</table>

Maximal observed ratios for random refinement.
Observed bounds for higher degrees of \((p,q)\)

<table>
<thead>
<tr>
<th>(p)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24</td>
<td>33</td>
<td>46</td>
<td>56</td>
<td>69</td>
<td>78</td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>46</td>
<td>65</td>
<td>78</td>
<td>97</td>
<td>109</td>
<td>128</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>65</td>
<td>91</td>
<td>110</td>
<td>136</td>
<td>154</td>
<td>179</td>
<td>198</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>78</td>
<td>110</td>
<td>132</td>
<td>163</td>
<td>186</td>
<td>216</td>
<td>238</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>97</td>
<td>136</td>
<td>164</td>
<td>202</td>
<td>229</td>
<td>268</td>
<td>295</td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>110</td>
<td>154</td>
<td>186</td>
<td>229</td>
<td>260</td>
<td>304</td>
<td>335</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
<td>128</td>
<td>180</td>
<td>217</td>
<td>268</td>
<td>304</td>
<td>355</td>
<td>391</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>141</td>
<td>198</td>
<td>239</td>
<td>295</td>
<td>335</td>
<td>391</td>
<td>431</td>
</tr>
</tbody>
</table>

Maximal observed ratios when refining the lower left.
Thank you!