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Overview

T-splines can be used for local refinement, but in general the T-splines are
not linearly independent. To have this property, we need analysis-suitable
T-meshes.
The proposed refinement algorithm provides the following

1 the preservation of analysis-suitablity and nestedness of the generated
T-spline spaces,

2 a bounded cardinality of the overlay,

3 linear computational complexity of the refinement procedure.
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Adaptive Mesh refinement

Adaptive mesh refinement

We consider only a 2D-index domain, as the physical domain can be
obtained via a suitable mapping.

Definition 1 (Initial mesh, element).

Given positive numbers M,N ∈ N, the initial mesh G0 is a tensor product
mesh consisting of closed squares (also denoted elements) with side length
1, i.e.

G0 :=

{
[m− 1,m]× [n− 1, n] : m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}

}
.

Definition 2.

The level of an element K is defined by

`(K) := − log2 |K|
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Adaptive Mesh refinement

(p,q)-patches

Definition 3.

Given an element K and polynomial degrees p and q, the (p,q)-patch is
defined by

Gp,q(K) := {K ∈ G : Dist(K ′,K) ≤Dp,q(l(K))}

with

Dp,q(k) :=

{
2−k/2(bp2c+ 1

2 , d
q
2e+ 1

2)if k is even

2−(k+1)/2(dp2e+ 1
2 , 2b

q
2c+ 1)if k is odd

Note that Dist(K ′,K) is the vector-valued distance between the
midpoints of K ′ and K.
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Adaptive Mesh refinement

Example for a (p,q)-patch
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Adaptive Mesh refinement

Refining an element

From now on, we assume p, q ≥ 2. This ensures that neighbouring
elements of K are always in Gp,q(K) and nested elements K ⊆ K̂ have
nested (p,q)-patches, i.e. Gp,q(K) ⊆ Gp,q(K̂).

Definition 4.

Given an arbitrary element K = [µ, µ+ µ̃]× [ν, ν + ν̃], we define the
operators

bisectx(K) := [µ, µ+
µ̃

2
]× [ν, ν + ν̃], [µ+

µ̃

2
, µ+ µ̃]× [ν, ν + ν̃]

and

bisecty(K) := [µ, µ+ µ̃]× [ν, ν +
ν̃

2
], [µ, µ+ µ̃]× [ν +

ν̃

2
, ν + ν̃].
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Adaptive Mesh refinement

Definition 5 (Bisection, Multiple bisections).

Given a mesh G and an element K ∈ G, we denote by bisect(G,K) the
mesh that results from a level dependent bisection of K,

bisect(G,K) := G \K ∪ child(K),

with

child(K) :=

{
bisectx(K), if `(K) is even

bisecty(K), if `(K) is odd
.

The bisection of multiple elements M⊆ G is defined by successive
bisections in an arbitrary order, i.e.

bisect(G,M) := bisect(bisect(. . . bisect(G,K1)),KJ).
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Adaptive Mesh refinement The algorithm

A superset

Now we can define our refinement algorithm but first need some superset
of M.

Algorithm (Closure).

Given a mesh G and a set of marked elements M⊆ G to be bisected, the
closure closp,qG (M) of M is computed as follows

M̃ :=M
repeat

for all K ∈ M̃ do

M̃ := M̃ ∪ {K′ ∈ Gp,q(K) : l(K′) < l(K)}
end for

until M̃ stops growing

return closp,qG (M) = M̃
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Adaptive Mesh refinement The algorithm

The refinement algorithm

Algorithm (Refinement).

Given a mesh G and a set of marked elements M⊆ G to be bisected,
refp,q(G,M) is defined by

refp,q(G,M) := bisect(G, closp,qG (M)).

In the following examples, the polynomial degrees are p = q = 3 and
M = 4, N = 5.
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Adaptive Mesh refinement The algorithm

Examples
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Adaptive Mesh refinement The algorithm

The concept of admissibility

Definition 6 ((p, q)-admissible bisections).

Given a mesh G and an element K ∈ G, the bisection of K is called
(p,q)-admissible if all K ′ ∈ Gp,q satisfy l(K ′) ≥ l(K).
In the case of several elements M = {K1, . . . ,KJ} ⊆ G , the bisection
bisect(G,M) is (p,q)-admissible if there is an order (σ(1), . . . , σ(J)) (this
is, if there is a permutation σ of 1, . . . , J) such that

bisect(G,M) = bisect(bisect(. . . bisect(G,Kσ(1)), . . . ),Kσ(J))

is a concatenation of (p,q)-admissible bisections.
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Adaptive Mesh refinement The algorithm

Definition 7 (Admissible refinement).

A refinement G of G0 is (p,q)-admissible if there is a sequence of meshes
G1, . . . ,GJ = G and markings Mj ⊆ Gj for j = 0, . . . , J − 1, such that
Gj+1 = bisect(Gj ,Mj) is a (p,q)-admissible bisection for all
j = 0, . . . , J − 1. The set of all (p,q)-admissible meshes, which is the
initial mesh and all its admissible refinements, is denoted by Ap,q.
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Adaptive Mesh refinement The algorithm

Preservance of admissibility

Lemma 8 (Local quasi-uniformity).

Given K ∈ G ∈ Ap,q, any K ′ ∈ Gp,q(K) satisfies `(K ′) ≥ `(K)− 1.

Proof.

See [5].

Proposition 9.

Any admissible mesh G and any set of marked elements M⊆ G satisfy
refp,q(G,M) ∈ Ap,q.

Proof.

By induction and with Lemma 8. For details, see [5].
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Analysis-Suitability

Analysis-suitability

To ensure that the T-spline blending functions of a refined mesh are still
linearly independent, we need the concept of analysis-suitable meshes.

Definition 10.

Consider an admissible mesh G ∈ Ap,q. The set of vertices of G is denoted
by N . We define the active region

AR := [dp
2
e,M − dp

2
e]× [dq

2
e, N − dq

2
e]

and the set of active nodes NA := N ∩AR

Definition 11.

We denote by hSk (resp. vSk) the horizontal (resp. vertical) skeleton,
which is the union of all horizontal (resp. vertical) edges. Note that
hSk ∩ vSk = N .
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Analysis-Suitability

Definition 12 (T-junction extension).

Denote by T ⊂ NA the set of all active nodes with valence three and refer
to them as T-junctions. Consider a T-junction T = (t1, t2) ∈ T of type a.
Clearly, t1 is one of the entries of X(t2). Then extract from X(t2) the
p+ 1 consecutive indices i−bp/2c, . . . , idp/2e such that i0 = t1. We denote

extp,qe (T ) := [i−bp/2c, i0]× {t2}, extp,qf (T ) := (i0, idp/2e]× {t2},

extp,q(T ) := extp,qf (T ) ∪ extp,qe (T ).

Here X(y) := {z ∈ [0,M ] : (z, y) ∈ vSk} is a global index set (analogous
definition for the x-direction).

Definition 13 (Analysis-suitability).

A mesh is analysis-suitable if horizontal T-junction extensions do not
intersect vertical T-junction extensions.
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Analysis-Suitability

Theorem 14.

All admissible meshes are analysis suitable.

Proof.

By induction over admissible bisections. For details, see [5].

Corollary 15.

All admissible meshes provide T-spline blending functions that are
non-negative, linearly independent, and form a partition of unity.
Moreover, on each element K ∈ G ∈ Ap,q, there are not more than
2(p+ 1)(q + 1) T-spline basis functions that have a support on K.

Proof.

See [3, 1]
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Overlay

Overlay

To use this algorithm for a posteriori error-driven refinement, we need
some theoretical properties on the overlay, which is the common coarsest
refinement.

Definition 16 (Overlay).

We define the operator Min⊆ which yields all minimal elements of a set
that is partially ordered by ” ⊆ ”,

Min⊆(M) := {K ∈M : ∀K ′ ∈M : K ′ ⊆ K → K ′ = K}

The overlay of G1,G2 ∈ Ap,q is defined by

G1 ⊗ G2 := Min⊆(G1 ∪ G2)

A. Schafelner (JKU Linz) A.S. adaptive T-mesh refinement January 19, 2017 20 / 35



Overlay

Proposition 17.

G1 ⊗G2 is the coarsest refinement of G1 and G2 in the sense that for any Ĝ
being a refinement of G1 and G2, and G1 ⊗ G2 being a refinement of Ĝ, it
follows that Ĝ = G1 ⊗ G2.

Proof.

Blackboard, see [5].
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Overlay

Two theoretical properties

Proposition 18.

For any admissible meshes G1,G2 ∈ Ap,q, the overlay G1 ⊗ G2 is also
admissible.

Lemma 19.

For all G1,G2 ∈ Ap,q holds

#(G1 ⊗ G2) + #G0 ≤ #G1 + #G2.

The second property is a assumption in [2].
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Nestedness

Nestedness

Now the nesting behaviour of the T-spline spaces corresponding to
admissible meshes is investigated (for details, see [5, 4]).

Definition 20.

For any partitions G1,G2 of Ω we introduce the refinement relation ” � ”,
which is defined using the overlay

G1 � G2 ⇔ G1 ⊗ G2 = G2

Corollary 21.

Denote the skeleton of a mesh G by Sk(G) := hSk(G) ∪ vSk(G) . Then
for rectangular partitions G1,G2 of Ω holds the equivalence

G1 � G2 ⇔ Sk(G1) ⊆ Sk(G2)
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Nestedness

Mesh extension

Definition 22.

Given a rectangular partition G of Ω , denote by extp,q(G) the union of all
T-junction extensions in the mesh G. Then the extended mesh Gext is
defined as the unique rectangular partition of Ω such that

Sk(Gext) = Sk(G) ∪ extp,q(G).

Sketch of an extended mesh.
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Nestedness

Mesh perturbation

Definition 23.

Given a partition G of Ω into axis-aligned rectangles, we define by Ptb(G)
the set of all continuous and invertible mappings δ : Ω→ Ω such that the
corners (0, 0), (M, 0), (M,N), (0, N) are fixed points of δ and

δ(G) = {δ(K) : K ∈ G}

is also a partition of Ω into axis-aligned rectangles.

Note for δ ∈ Ptb(G), the corresponding skeleton satisfies
Sk(δ(G)) = δ(Sk(G)). In general, such a perturbation δ does not map
T-junction extensions to the corresponding extensions in the perturbed
mesh, i.e.

extp,qδ(G)(δ(T )) 6= δ(extp,qG (T )).
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Nestedness

Example for a perturbation.
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Nestedness

Theorem 24.

Given two analysis-suitable meshes G1 and G2, if for all δ ∈ Ptb(G2) holds

(δ(G1))ext � (δ(G2))ext

then the T-spline spaces corresponding to G1 and G2 are nested.

Proof.

See [4].
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Nestedness

Theorem 25.

Any two meshes G1,G2 ∈ Ap,q that are nested in the sense G1 � G2 satisfy
for all δ ∈ Ptb(G2)

(δ(G1))ext � (δ(G2))ext.

Proof.

It is sufficient to show

extp,q(δ(G1)) ∪ Sk(δ(G1)) ⊆ extp,q(δ(G2)) ∪ Sk(δ(G2)).

First, let K ∈ G1 ∈ Ap,q and G2 := bisect(G1), then
G1 � G2 ⇒ Sk(δ(G1)) ⊆ Sk(δ(G2)).
The second part includes comparison of different cases. For further details,
see [5].
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Nestedness

Combination of these two results gives us:

Corollary 26.

For any two meshes G1,G2 ∈ Ap,q that are nested in the sense G1 � G2 ,
the corresponding T-spline spaces are also nested.
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Linear complexity

Linear complexity

The following estimate shows that the number of refined elements depends
at most linearly on the number of marked elements.

Theorem 27.

Any sequence of admissible meshes G0,G1, . . . ,GJ with

Gj = refp,q(Gj−1,Mj−1), Mj−1 ⊆ Gj−1 for j ∈ {1, . . . , J}

satisfies

|GJ \ G0| ≤ Cp,q
J−1∑
j=0

|Mj |

with Cp,q = (3 +
√

2)(4dp + 1)(4dq +
√

2) and

dp = (1 + 2−1/2)p+ 1 +
5

4

√
2, dq = (1 +

√
2)q +

3

2
+
√

2.
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Linear complexity

Sketch of proof

One can show the following:

for K ∈
⋃
Ap,q and K̃ ∈M, define λ(K, K̃) by

λ(K, K̃) :=

{
2`(K)−`(K̃)/2, if `(K) ≤ `(K̃) + 1 and Dist(K, K̃) ≤ 21−`(K)/2(dp, dq),

0 otherwise

for all j ∈ {0, ..., J − 1} and K̃ ∈Mj holds∑
K∈GJ\G0

λ(K, K̃) ≤ (3 +
√

2)(4dp + 1)(4dq +
√

2) = Cp,q,

each K ∈ GJ \ G0 satisfies∑
K̃∈M

λ(K, K̃) ≥ 1.

A. Schafelner (JKU Linz) A.S. adaptive T-mesh refinement January 19, 2017 31 / 35



Linear complexity

Remarks and Examples

The result of the theorem is not trivial, as there is no uniform bound
for the number of generated elements.

The large constant Cp,q was not observed in the numerical
experiments by the authors.

Generated and marked elements for randomly refined (3,3)-admissible meshes.
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Linear complexity

Observed bounds for higher degrees of (p,q)

Maximal observed ratios for random refinement.
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Linear complexity

Observed bounds for higher degrees of (p,q)

Maximal observed ratios when refining the lower left.
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The End?

Thank you!
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