

Nora Engleitner

Institute of Applied Geometry, Johannes Kepler University MTU Aero Engines AG, Munich

(T)HB-SPLINES

(T)HB-SPLINES

INTRODUCTION

Local spline refinement

Problem: Classical tensor-product B-splines do not allow local refinement.

Task: Knot refinement in the marked areas.

Resulting mesh for B-splines.

How can we achieve a mesh like this?

Existing constructions

T-splines (Sederberg et al. 2003):

tensor-product B-splines defined on a mesh with T-junctions

PHT-splines (Falai Chen, Jiansong Deng 2008):

algebraically complete basis for splines on a mesh with T-junctions

HB-splines, THB-splines (Kraft 1997, Giannelli et al. 2012): obtained by selecting B-splines from different levels in a hierarchy

LR-splines (Dokken et al. 2010): constructed by repeatedly splitting tensor-product B-splines

This talk focuses on *HB-splines*.

(T)HB-SPLINES

A HIERARCHICAL B-SPLINE BASIS

Consider a finite sequence of

- Insteed spline spaces, $V^0 \subseteq V^1 \subseteq \ldots \subseteq V^N$, with $V^{\ell} = \operatorname{span} B^{\ell}$,
- corresponding nested domains, $\Omega = \Omega^0 \supseteq \Omega^1 \supseteq \ldots \supseteq \Omega^N$.

The index ℓ is called *level*.

A hierarchical mesh and the domains Ω^0 (green), Ω^1 (blue) and Ω^2 (red).

J⊼∩

Kraft's selection mechanism

$$\operatorname{supp} f = \{ \mathbf{x} : f(\mathbf{x}) \neq 0 \text{ and } \mathbf{x} \in \Omega^0 \}$$

Recursive construction of HB-splines

1) Initialization:
$$H^0 = \{\beta \in B^0 : \operatorname{supp} \beta \neq \emptyset\}$$

2) Recursion:
$$H^{\ell+1} = H_A^{\ell+1} \cup H_B^{\ell+1}$$
, for $\ell = 0, ..., N - 1$, with

$$H_A^{\ell+1} = \{ \beta \in H^\ell : \operatorname{supp} \beta \not\subseteq \Omega^{\ell+1} \},\$$

and

$$H_B^{\ell+1} = \{\beta \in B^{\ell+1} : \operatorname{supp} \beta \subseteq \Omega^{\ell+1}\}$$

3) $H = H^N$

J⊼∩

J⊼∩

(T)HB-SPLINES

TRUNCATION

Restoring partition of unity

HB-splines: no partition of unity \rightarrow solution: *truncation mechanism* (cf. Giannelli et al. 2012)

<u>Refinement relation</u>: For $f \in V^{\ell}$ we have $f = \sum_{\beta \in B^{\ell+1}} c_{\beta}^{\ell+1}(f)\beta$. Truncation:

$$\operatorname{trunc}^{\ell+1} f = \sum_{\beta \in B^{\ell+1}, \operatorname{supp} \beta \not\subseteq \Omega^{\ell+1}} c_{\beta}^{\ell+1}(f) \beta.$$

Truncated hierarchical B-spline basis:

1) Initialization:
$$T^0 = H^0$$

2) Recursion: $T^{\ell+1} = T_A^{\ell+1} \cup T_B^{\ell+1}$, for $\ell = 0, \ldots, N-1$, with

$$T_A^{\ell+1} = \{ \operatorname{trunc}^{\ell+1} \tau : \tau \in T^\ell \text{ and } \operatorname{supp} \tau \not\subseteq \Omega^{\ell+1} \}, \quad \text{and} \quad T_B^{\ell+1} = H_B^{\ell+1}$$

3) $T = T^N$

J⊼N

Comparing THB- and HB-splines

THB-splines

Comparing THB- and HB-splines

THB-splines

HB-splines

(T)HB-SPLINES

PROPERTIES

Properties of (T)HB-splines

HB-splines:

non-negativity

linear independence

■ under certain assumptions: span $H = \mathcal{H} = \{h : \Omega^0 \to \mathbb{R} : h|_{\Omega^0 \setminus \Omega^{\ell+1}} \in S^{\ell}(M^{\ell})\}$

Additionally for THB-splines:

- $\blacksquare \ \mathrm{span}H = \mathrm{span}T$
- preservation of coefficients
- partition of unity
- strongly stable under supremum norm

J⊼∩

Quasi-interpolant for (T)HB-splines

References: Speleers et al. 2015, Speleers 2016

A one-level quasi-interpolant $\Pi^{\ell} : \mathcal{V}(\Omega^0) \mapsto V^{\ell}$

$$\Pi^{\ell} f = \sum_{i=1}^{n_{\ell}} \lambda_i^{\ell}(f) \beta_i^{\ell}, \quad \ell = 0, \dots, N.$$

 $\begin{array}{l} \lambda_i^\ell \text{ is supported on } \Lambda_i^\ell \text{ if } f|_{\Lambda_i^\ell} = 0 \Rightarrow \lambda_i^\ell(f) = 0. \text{ For a cell } Q^\ell \text{ in } \Omega^\ell \setminus \Omega^{\ell+1} \\ \text{define} \end{array}$

$$\Lambda_{Q^{\ell}} = \operatorname{conv} \left(\bigcup_{(i,\ell): \operatorname{supp} \tau_i^{\ell} \cap Q^{\ell} \neq \emptyset} \Lambda_i^{\ell} \cup Q^{\ell} \right).$$

Hierarchical quasi-interpolant $\Pi: \mathcal{V}(\Omega^0) \mapsto \mathcal{H}$

$$\Pi f := \sum_{\ell=0}^{N} \sum_{\tau_i^\ell \in T} \lambda_i^\ell(f) \tau_i^\ell,$$

where $\tau_i^{\ell} = \operatorname{trunc}^N \left(\operatorname{trunc}^{N-1} \cdots \left(\operatorname{trunc}^{\ell+1} \beta_i^{\ell} \right) \cdots \right).$

J⊼∩

Quasi-interpolant for (T)HB-splines

Representation in terms of HB-splines (using telescoping argument): **Theorem:** Π^{ℓ} and Π as defined before. If $\Pi^{\ell}s = s$ for all $s \in V^{\ell}$ then

$$\Pi f = \sum_{\ell=0}^{N} f^{(\ell)},$$

with

$$f^{(0)} = \sum_{\beta_i^0 \in H} \lambda_i^0 \beta_i^0, \quad f^{(\ell)} = \sum_{\beta_i^\ell \in H} \lambda_i^\ell (f - f^{(0)} - f^{(1)} - \dots - f^{(\ell-1)}) \beta_i^\ell.$$

Error estimate:

$$||D^{\alpha}(f - \Pi f)||_{L^{2}(Q^{\ell})} \leq Ch_{\ell}^{s-|\alpha|}|f|_{H^{s}(\Lambda_{Q^{\ell}})}.$$

(T)HB-SPLINES

SUMMARY

Summary

- Selection mechanism for hierarchical B-splines
- Restoring partition of unity with truncation mechanism
- (T)HB-splines have nice mathematical properties
- (T)HB-splines are a basis for the hierarchical spline space
- Quasi-interpolant and local approximation estimate

PATCHWORK B-SPLINES

PATCHWORK B-SPLINES

INTRODUCTION

Motivation

Independent refinement strategies \rightsquigarrow cannot be achieved with HB-splines \rightsquigarrow hierarchical refinement leads to redundant dof

J⊼N

Motivation

State of the art: Hierarchical B-splines that use sequences of *nested* spline spaces, $V^0 \subseteq V^1 \subseteq \ldots \subseteq V^N$.

Limitation: Independent refinement strategies are not possible.

Possible application of independent refinement strategies:

- Modeling: designing objects with creases or similar features.
- IGA: using different refinement techniques (e.g., *h* and *p*-refinement) in different parts of the domain.

Goal: Generalization of the selection mechanism for hierarchical B-splines to obtain sequences of *partially nested* hierarchical spline spaces, that use spline spaces such as $V^0 \subseteq V^1 \not\subseteq V^2 \subseteq V^3 \dots$

J⊼N

Preliminaries

We consider:

■ A finite sequence of bivariate tensor-product spline spaces:

$$V^{\ell} = \operatorname{span} B^{\ell}, \quad \ell = 1, \dots, N.$$

□ Note: V^{ℓ} not necessarily subspace of $V^{\ell+1}$ □ For simplicity: d = 2, uniform degrees, maximum smoothness

An associated sequence of open sets

$$\pi^{\ell} \subseteq (0,1)^2, \quad \ell = 1, \dots, N.$$

□ The sets are called *patches*.

 \Box We assume that they are mutually disjoint, i.e., $\pi^{\ell} \cap \pi^{k} \neq \emptyset \Rightarrow \ell = k$.

Preliminaries

Patches and associated spline spaces.

The patchwork spline space

Collecting all patches results in the *domain* Ω , i.e.,

$$\Omega = \operatorname{int}\left(\bigcup_{\ell=1}^{N} \overline{\pi^{\ell}}\right) \subseteq (0,1)^{2}.$$

Now we define the *patchwork spline space* :

$$\mathcal{P} = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \ \forall \ell = 1, \dots, N \},\$$

with maximal order of smoothness

$$\mathbf{s} = \mathbf{p} - 1.$$

The patchwork spline space

Definition: $\mathcal{P} = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \quad \forall \ell = 1, \dots, N \}$ $f \in V^1|_{\pi^1}$ $f \in V^4|_{\pi^4}$ π^4 π^1 π^3 π^2 $f \in V^3|_{\pi^3}$ $f \in V^2|_{\pi^2}$ C^{s} -smooth functions (1) (2) patch restriction belongs to assoc. spline space

J⊼∩

PATCHWORK B-SPLINES

BASIS FUNCTIONS

The *constraining boundary* of a patch

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

is the part of the boundary shared with patches of a lower level.

π^3	π^4		π^1
π^5		π^2	π^6

Constraining boundaries of π^1

The *constraining boundary* of a patch

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^2

The *constraining boundary* of a patch

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^4

The *constraining boundary* of a patch

$$\Gamma^{\ell} = \bigcup_{k=1}^{\ell-1} \overline{\pi^k} \cap \overline{\pi^\ell},$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^5

Selection mechanism

We generalize Kraft's selection mechanism:

$$K^{\ell} = \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell}|_{\pi^{\ell}} \neq 0 \quad \text{and} \quad \beta^{\ell}|_{\Gamma^{\ell}} = 0 \}.$$

Definition: The *patchwork B-splines* (PB-splines) are obtained by forming the union over all levels,

$$K = \bigcup_{\ell=1}^{N} K^{\ell}.$$

Selection mechanism

$$K^{\ell} = \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell} |_{\pi^{\ell}} \neq 0 \text{ and } \beta^{\ell} |_{\Gamma^{\ell}} = 0 \}.$$

The selection mechanism for PB-splines ($k < \ell$).

J⊼N

Shadow

We define the shadow of a patch π^ℓ as the union of all supports of the selected basis functions,

$$\hat{\pi}^{\ell} = \operatorname{supp} K^{\ell} = \bigcup_{\beta^{\ell} \in K^{\ell}} \operatorname{supp} \beta^{\ell}.$$

Example: Shadows and meshes

The knot lines of the spline space V^{ℓ} define a **mesh** M^{ℓ} of level ℓ .

A patchwork mesh.

Shadow and selected basis functions for two levels. (points: selected B-splines, shadow: hatched area)

PATCHWORK B-SPLINES

CHARACTERIZING THE SPLINE SPACE

Shadow Compatibility Assumption (SCA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^k of a different level k, then the first level precedes the second one,

 π^1

SCA satisfied.

SCA not satisfied.

31/45

Shadow Compatibility Assumption (SCA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of a different level k, then the first level precedes the second one,

Theorem: SCA implies linear independence of PB-splines.

J⊼∩

Constraining Boundary Alignment (CBA)

Assumption For each level ℓ , the constraining boundary Γ^{ℓ} of the patch π^{ℓ} is aligned with the knot lines of the spline space V^{ℓ} .

CBA not satisfied.

CBA satisfied.

J⊼∩

Space characterization

Theorem The PB-splines span the patchwork spline space \mathcal{P} if both SCA and CBA are satisfied.

Thus, we have *two different characterizations* of the patchwork spline space:

$$\mathcal{P} = \{ f \in \mathcal{C}^{\mathbf{s}}(\Omega) : f|_{\pi^{\ell}} \in V^{\ell}|_{\pi^{\ell}} \ \forall \ell = 1, \dots, N \},\$$

("implicit" definition: space defined by properties of functions)

$$\mathcal{P} = \operatorname{span} \bigcup_{\ell=1}^{N} \{ \beta^{\ell} \in B^{\ell} : \beta^{\ell} |_{\pi^{\ell}} \neq 0 \quad \text{and} \quad \beta^{\ell} |_{\Gamma^{\ell}} = 0 \}$$

("constructive" definition: space defined as linear hull of basis functions)

J⊼N

Restoring partition of unity

Truncation mechanism

Recall: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines

The recipe:

Truncated function: "original function *minus* contribution of selected basis functions from higher levels"

Is there a generalization to truncated PB-splines?

Restoring partition of unity

Truncation mechanism

Recall: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines

The recipe:

Truncated function: "original function *minus* contribution of selected basis functions from higher levels"

Is there a generalization to truncated PB-splines? Yes!

Truncated PB-splines

- are linearly independent,
- form a partition of unity,
- are non-negative and
- span the patchwork spline space.

J⊼∩

PATCHWORK B-SPLINES

PB-SPLINES IN SURFACE APPROXIMATION

Surface approximation problem

Given: data set $(f_i, \mathbf{x}_i), i = 0, \dots, m$,

 \Box coordinates of data points $f_i \in \mathbb{R}^3$,

 \square associated parameters $\mathbf{x}_i \in [0, 1]^2$.

■ Choose a setting that generates the PB-splines *K*:

- \Box patches π^1, \ldots, π^N and
- \Box spline spaces V^1, \ldots, V^N .

Compute the least squares approximation $f = \sum_{\beta \in K} c_{\beta}\beta$, which minimizes

$$\sum_{i=0}^{m} \|f_i - f(\mathbf{x}_i)\|^2.$$

How to choose the patches and corresponding spline spaces?

- Manual construction
- Automatic refinement process

J⊼∩

Example I

We want to approximate the following function:

Function for approximation.

Manual mesh generation

The meshes used for defining the approximating spline functions.

	no. of dof	% of dof	max. error	average error
tensor-product B-splines	2916	100%	3.08e-3	1.5e-4
HB-splines	2468	85 %	3.08e-3	1.02e-4
PB-splines	1572	54 %	1.03e-3	6.94e-5

Numerical results of the least-squares approximation.

Automatic mesh refinement

 \blacksquare Initial setting defining K_0

- \Box patches π^1, \ldots, π^{N_0} and \Box spline spaces $V_0^1, \ldots, V_0^{N_0}$.

Compute least squares approximation for K₀

Marking process:

- \square Identify those \mathbf{x}_i with $||f_i f(\mathbf{x}_i)|| > \varepsilon$,
- \Box find the patches that contain \mathbf{x}_i ,
- mark them for refinement.

Refinement process:

- \square *n*-adic subdivision of the marked patches,
- □ (poss. new marking process),
- □ knot refinement in the corresponding spline spaces,
- ensure that all assumptions are satisfied.
- Challenge: Determine the direction of the refinement

Determining the refinement direction

Determining the refinement direction with a *local fitting-based* method:

- Perform local fitting on patches π^{ℓ} .
- Try different refinement strategies, e.g., uniform knot refinement in *x* vs. in *y*-direction.
- The strategy that performs better, i.e., produces less error, determines the refinement direction.

Advantages:

- No assumptions on data,
- simple.

Disadvantages:

■ Could become slow if too many strategies are tested.

J⊼∩

Automatic mesh refinement - results

PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

	no. of dof	% of dof	max. error	average error
HB-splines	1860	100 %	3.08e-3	1.42e-4
PB-splines	1106	59 %	1.12e-3	1.31e-4

Automatic mesh refinement - results

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.

	no. of dof	% of dof	max. error	average error
HB-splines	1860	100 %	3.08e-3	1.42e-4
PB-splines	1106	59 %	1.12e-3	1.31e-4

Example II

PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

	no. of dof	% of dof	max. error	average error
HB-splines	2688	100 %	1.01e-3	1.56e-4
PB-splines	1169	43 %	1.06e-3	1.47e-4

Example II

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.

	no. of dof	% of dof	max. error	average error
HB-splines	2688	100 %	1.01e-3	1.56e-4
PB-splines	1169	43 %	1.06e-3	1.47e-4

PATCHWORK B-SPLINES

SUMMARY AND OUTLOOK

Summary

- Generalization of the Kraft selection mechanism from hierarchical B-splines to PB-splines
- Characterization of the spline space spanned by the PB-splines
- Introduction of a truncation mechanism → partition of unity
- Application of PB-splines to surface approximation
- Automatic refinement algorithm for PB-spline meshes
- PB-splines enable the use of independent refinement strategies
- PB-splines need fewer degrees of freedom than HB-splines

Current work and outlook

- Generalizing the completeness result from HB-splines to PB-splines
- Generalizing the approximation error estimates from HB-splines to PB-splines
- Implementation of the truncation mechanism
- Development of further automatic mesh refinement strategies
- Application in industry
 - $\hfill \ensuremath{\square}$ Fitting of structural components like airfoils \rightarrow periodic fitting
 - □ Lofting

