(T)HB- AND PATCHWORK B-SPLINES

Nora Engleitner

Institute of Applied Geometry, Johannes Kepler University MTU Aero Engines AG, Munich

(T)HB-SPLINES

(T)HB-SPLINES

INTRODUCTION

Local spline refinement

Problem: Classical tensor-product B-splines do not allow local refinement.

Task: Knot refinement in the marked areas.

Resulting mesh for B-splines.

How can we achieve a mesh like this?

Existing constructions

T-splines (Sederberg et al. 2003):
tensor-product B -splines defined on a mesh with T -junctions
PHT-splines (Falai Chen, Jiansong Deng 2008):
algebraically complete basis for splines on a mesh with T-junctions
HB-splines, THB-splines (Kraft 1997, Giannelli et al. 2012):
obtained by selecting B -splines from different levels in a hierarchy
LR-splines (Dokken et al. 2010):
constructed by repeatedly splitting tensor-product B-splines

This talk focuses on HB-splines.

(T)HB-SPLINES

A HIERARCHICAL B-SPLINE BASIS

Hierarchical B-splines

Consider a finite sequence of
■ nested spline spaces, $V^{0} \subseteq V^{1} \subseteq \ldots \subseteq V^{N}$, with $V^{\ell}=\operatorname{span} B^{\ell}$,
■ corresponding nested domains, $\Omega=\Omega^{0} \supseteq \Omega^{1} \supseteq \ldots \supseteq \Omega^{N}$.
The index ℓ is called level.

A hierarchical mesh and the domains Ω^{0} (green), Ω^{1} (blue) and Ω^{2} (red).

Kraft's selection mechanism

$\operatorname{supp} f=\left\{\mathbf{x}: f(\mathbf{x}) \neq 0\right.$ and $\left.\mathbf{x} \in \Omega^{0}\right\}$
Recursive construction of HB-splines

1) Initialization: $H^{0}=\left\{\beta \in B^{0}: \operatorname{supp} \beta \neq \emptyset\right\}$
2) Recursion: $H^{\ell+1}=H_{A}^{\ell+1} \cup H_{B}^{\ell+1}$, for $\ell=0, \ldots, N-1$, with

$$
H_{A}^{\ell+1}=\left\{\beta \in H^{\ell}: \operatorname{supp} \beta \nsubseteq \Omega^{\ell+1}\right\}
$$

and

$$
H_{B}^{\ell+1}=\left\{\beta \in B^{\ell+1}: \operatorname{supp} \beta \subseteq \Omega^{\ell+1}\right\}
$$

3) $H=H^{N}$

Hierarchical B-splines

Hierarchical B-splines

Hierarchical B-splines

2a) Recursion: $H_{A}^{1}=\left\{\beta \in H^{0}=B^{0}: \operatorname{supp} \beta \nsubseteq \Omega^{1}\right\}$

Hierarchical B-splines

Hierarchical B-splines

2b) Recursion: $H_{B}^{1}=\left\{\beta \in B^{1}: \operatorname{supp} \beta \subseteq \Omega^{1}\right\}$

Hierarchical B-splines

3) Resulting hierarchical B-splines $H=H_{A}^{1} \cup H_{B}^{1}$

(T)HB-SPLINES

TRUNCATION

Restoring partition of unity

HB-splines: no partition of unity \rightarrow solution: truncation mechanism (cf. Giannelli et al. 2012)

Refinement relation: For $f \in V^{\ell}$ we have $f=\sum_{\beta \in B^{\ell+1}} c_{\beta}^{\ell+1}(f) \beta$.
Truncation:

$$
\operatorname{trunc}^{\ell+1} f=\sum_{\beta \in B^{\ell+1}, \text { supp } \beta \ell \Omega^{\ell+1}} c_{\beta}^{\ell+1}(f) \beta .
$$

Truncated hierarchical B-spline basis:

1) Initialization: $T^{0}=H^{0}$
2) Recursion: $T^{\ell+1}=T_{A}^{\ell+1} \cup T_{B}^{\ell+1}$, for $\ell=0, \ldots, N-1$, with

$$
T_{A}^{\ell+1}=\left\{\operatorname{trunc}^{\ell+1} \tau: \tau \in T^{\ell} \text { and } \operatorname{supp} \tau \nsubseteq \Omega^{\ell+1}\right\}, \quad \text { and } \quad T_{B}^{\ell+1}=H_{B}^{\ell+1}
$$

3) $T=T^{N}$

Comparing THB- and HB-splines

THB-splines

J́U

Comparing THB- and HB-splines

THB-splines

HB-splines

(T)HB-SPLINES

PROPERTIES

Properties of (T)HB-splines

HB-splines:

- non-negativity
- linear independence
- under certain assumptions:

$$
\operatorname{span} H=\mathcal{H}=\left\{h: \Omega^{0} \rightarrow \mathbb{R}:\left.h\right|_{\Omega^{0} \backslash \Omega^{\ell+1}} \in \mathcal{S}^{\ell}\left(M^{\ell}\right)\right\}
$$

Additionally for THB-splines:

- $\operatorname{span} H=\operatorname{span} T$
- preservation of coefficients
- partition of unity
- strongly stable under supremum norm

JYU

Quasi-interpolant for (T)HB-splines

References: Speleers et al. 2015, Speleers 2016
A one-level quasi-interpolant $\Pi^{\ell}: \mathcal{V}\left(\Omega^{0}\right) \mapsto V^{\ell}$

$$
\Pi^{\ell} f=\sum_{i=1}^{n_{\ell}} \lambda_{i}^{\ell}(f) \beta_{i}^{\ell}, \quad \ell=0, \ldots, N
$$

λ_{i}^{ℓ} is supported on Λ_{i}^{ℓ} if $\left.f\right|_{\Lambda_{i}^{\ell}}=0 \Rightarrow \lambda_{i}^{\ell}(f)=0$. For a cell Q^{ℓ} in $\Omega^{\ell} \backslash \Omega^{\ell+1}$ define

$$
\Lambda_{Q^{\ell}}=\operatorname{conv}\left(\bigcup_{(i, \ell): \operatorname{supp} \tau_{i}^{\ell} \cap Q^{\ell} \neq \emptyset} \Lambda_{i}^{\ell} \cup Q^{\ell}\right) .
$$

Hierarchical quasi-interpolant $\Pi: \mathcal{V}\left(\Omega^{0}\right) \mapsto \mathcal{H}$

$$
\Pi f:=\sum_{\ell=0}^{N} \sum_{\tau_{i}^{\ell} \in T} \lambda_{i}^{\ell}(f) \tau_{i}^{\ell},
$$

where $\tau_{i}^{\ell}=\operatorname{trunc}^{N}\left(\operatorname{trunc}^{N-1} \cdots\left(\operatorname{trunc}^{\ell+1} \beta_{i}^{\ell}\right) \cdots\right)$.

Quasi-interpolant for (T)HB-splines

Representation in terms of HB-splines (using telescoping argument):
Theorem: Π^{ℓ} and Π as defined before. If $\Pi^{\ell} s=s$ for all $s \in V^{\ell}$ then

$$
\Pi f=\sum_{\ell=0}^{N} f^{(\ell)},
$$

with

$$
f^{(0)}=\sum_{\beta_{i}^{0} \in H} \lambda_{i}^{0} \beta_{i}^{0}, \quad f^{(\ell)}=\sum_{\beta_{i}^{\ell} \in H} \lambda_{i}^{\ell}\left(f-f^{(0)}-f^{(1)}-\cdots-f^{(\ell-1)}\right) \beta_{i}^{\ell} .
$$

Error estimate:

$$
\left\|D^{\alpha}(f-\Pi f)\right\|_{L^{2}\left(Q^{\ell}\right)} \leq C h_{\ell}^{s-|\alpha|}|f|_{H^{s}\left(\Lambda_{\left.Q^{\ell}\right)}\right)} .
$$

(T)HB-SPLINES

SUMMARY

Summary

■ Selection mechanism for hierarchical B-splines
■ Restoring partition of unity with truncation mechanism

- (T)HB-splines have nice mathematical properties

■ (T)HB-splines are a basis for the hierarchical spline space

- Quasi-interpolant and local approximation estimate

PATCHWORK B-SPLINES

PATCHWORK B-SPLINES

INTRODUCTION

Motivation

Independent refinement strategies \sim cannot be achieved with HB-splines
\leadsto hierarchical refinement leads to redundant dof

Motivation

State of the art: Hierarchical B-splines that use sequences of nested spline spaces, $V^{0} \subseteq V^{1} \subseteq \ldots \subseteq V^{N}$.

Limitation: Independent refinement strategies are not possible.

Possible application of independent refinement strategies:
■ Modeling: designing objects with creases or similar features.
■ IGA: using different refinement techniques (e.g., h - and p-refinement) in different parts of the domain.

Goal: Generalization of the selection mechanism for hierarchical B-splines to obtain sequences of partially nested hierarchical spline spaces, that use spline spaces such as $V^{0} \subseteq V^{1} \nsubseteq V^{2} \subseteq V^{3} \ldots$

Preliminaries

We consider:
■ A finite sequence of bivariate tensor-product spline spaces:

$$
V^{\ell}=\operatorname{span} B^{\ell}, \quad \ell=1, \ldots, N .
$$

\square Note: V^{ℓ} not necessarily subspace of $V^{\ell+1}$
\square For simplicity: $d=2$, uniform degrees, maximum smoothness

- An associated sequence of open sets

$$
\pi^{\ell} \subseteq(0,1)^{2}, \quad \ell=1, \ldots, N .
$$The sets are called patches.

\square We assume that they are mutually disjoint, i.e., $\pi^{\ell} \cap \pi^{k} \neq \emptyset \Rightarrow \ell=k$.

Preliminaries

Patches and associated spline spaces.

The patchwork spline space

Collecting all patches results in the domain Ω, i.e.,

$$
\Omega=\operatorname{int}\left(\bigcup_{\ell=1}^{N} \overline{\pi^{\ell}}\right) \subseteq(0,1)^{2}
$$

Now we define the patchwork spline space :

$$
\mathcal{P}=\left\{f \in \mathcal{C}^{\mathbf{s}}(\Omega):\left.\left.f\right|_{\pi^{\ell}} \in V^{\ell}\right|_{\pi^{\ell}} \forall \ell=1, \ldots, N\right\},
$$

with maximal order of smoothness

$$
\mathbf{s}=\mathbf{p}-1
$$

The patchwork spline space

Definition: $\mathcal{P}=\left\{f \in \mathcal{C}^{\mathbf{s}}(\Omega):\left.|f|_{\pi^{\ell}} \in V^{\ell}\right|_{\pi^{\ell}} \quad \forall \ell=1, \ldots, N\right\}$

(1) $C^{\text {s }}$-smooth functions
(2) patch restriction belongs to assoc. spline space

PATCHWORK B-SPLINES

BASIS FUNCTIONS

Constraining boundaries

The constraining boundary of a patch

$$
\Gamma^{\ell}=\bigcup_{k=1}^{\ell-1} \overline{\pi^{k}} \cap \overline{\pi^{\ell}}
$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^{1}

Constraining boundaries

The constraining boundary of a patch

$$
\Gamma^{\ell}=\bigcup_{k=1}^{\ell-1} \overline{\pi^{k}} \cap \overline{\pi^{\ell}}
$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^{2}

Constraining boundaries

The constraining boundary of a patch

$$
\Gamma^{\ell}=\bigcup_{k=1}^{\ell-1} \overline{\pi^{k}} \cap \overline{\pi^{\ell}}
$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^{4}

Constraining boundaries

The constraining boundary of a patch

$$
\Gamma^{\ell}=\bigcup_{k=1}^{\ell-1} \overline{\pi^{k}} \cap \overline{\pi^{\ell}}
$$

is the part of the boundary shared with patches of a lower level.

Constraining boundaries of π^{5}

Selection mechanism

We generalize Kraft's selection mechanism:

$$
K^{\ell}=\left\{\beta^{\ell} \in B^{\ell}:\left.\beta^{\ell}\right|_{\pi^{\ell}} \neq 0 \quad \text { and }\left.\quad \beta^{\ell}\right|_{\Gamma^{\ell}}=0\right\}
$$

Definition: The patchwork \boldsymbol{B}-splines (PB-splines) are obtained by forming the union over all levels,

$$
K=\bigcup_{\ell=1}^{N} K^{\ell}
$$

Selection mechanism

$$
K^{\ell}=\left\{\beta^{\ell} \in B^{\ell}:\left.\beta^{\ell}\right|_{\pi^{\ell}} \neq 0 \quad \text { and }\left.\quad \beta^{\ell}\right|_{\Gamma^{\ell}}=0\right\}
$$

The selection mechanism for PB-splines $(k<\ell)$.

Shadow

We define the shadow of a patch π^{ℓ} as the union of all supports of the selected basis functions,

$$
\hat{\pi}^{\ell}=\operatorname{supp} K^{\ell}=\bigcup_{\beta^{\ell} \in K^{\ell}} \operatorname{supp} \beta^{\ell} .
$$

Example: Shadows and meshes

The knot lines of the spline space V^{ℓ} define a mesh M^{ℓ} of level ℓ.

A patchwork mesh.

Shadow and selected basis functions for two levels. (points: selected B-splines, shadow: hatched area)

PATCHWORK B-SPLINES

CHARACTERIZING THE SPLINE SPACE

Shadow Compatibility Assumption (SCA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of a different level k, then the first level precedes the second one,

$$
\hat{\pi}^{\ell} \cap \pi^{k} \neq \emptyset \quad \Rightarrow \quad \ell \leq k \quad \text { and } \quad V^{\ell} \subseteq V^{k}
$$

SCA not satisfied.

SCA satisfied.

Shadow Compatibility Assumption (SCA)

Assumption If the shadow $\hat{\pi}^{\ell}$ of the patch of level ℓ intersects another patch π^{k} of a different level k, then the first level precedes the second one,

$$
\hat{\pi}^{\ell} \cap \pi^{k} \neq \emptyset \quad \Rightarrow \quad \ell \leq k \quad \text { and } \quad V^{\ell} \subseteq V^{k}
$$

SCA not satisfied.

SCA satisfied.

Theorem: SCA implies linear independence of PB-splines.

Constraining Boundary Alignment (CBA)

Assumption For each level ℓ, the constraining boundary Γ^{ℓ} of the patch π^{ℓ} is aligned with the knot lines of the spline space V^{ℓ}.

CBA not satisfied.

CBA satisfied.

Space characterization

Theorem The PB-splines span the patchwork spline space \mathcal{P} if both SCA and CBA are satisfied.

Thus, we have two different characterizations of the patchwork spline space:

$$
\mathcal{P}=\left\{f \in \mathcal{C}^{\mathbf{s}}(\Omega):\left.\left.f\right|_{\pi^{\ell}} \in V^{\ell}\right|_{\pi^{\ell}} \forall \ell=1, \ldots, N\right\},
$$

("implicit" definition: space defined by properties of functions)

$$
\mathcal{P}=\operatorname{span} \bigcup_{\ell=1}^{N}\left\{\beta^{\ell} \in B^{\ell}:\left.\beta^{\ell}\right|_{\pi^{\ell}} \neq 0 \quad \text { and }\left.\quad \beta^{\ell}\right|_{\Gamma^{\ell}}=0\right\}
$$

("constructive" definition: space defined as linear hull of basis functions)

Restoring partition of unity

Truncation mechanism
Recall: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines
The recipe:
Truncated function: "original function minus contribution of selected basis functions from higher levels"

Is there a generalization to truncated PB-splines?

Restoring partition of unity

Truncation mechanism
Recall: Hierarchical B-splines \rightarrow Truncated Hierarchical B-splines
The recipe:
Truncated function: "original function minus contribution of selected basis functions from higher levels"

Is there a generalization to truncated PB-splines? Yes!
Truncated PB-splines

- are linearly independent,
- form a partition of unity,
- are non-negative and

■ span the patchwork spline space.

PATCHWORK B-SPLINES

PB-SPLINES IN SURFACE APPROXIMATION

Surface approximation problem

■ Given: data set $\left(f_{i}, \mathbf{x}_{i}\right), i=0, \ldots, m$,
\square coordinates of data points $f_{i} \in \mathbb{R}^{3}$,
\square associated parameters $\mathbf{x}_{i} \in[0,1]^{2}$.
■ Choose a setting that generates the PB-splines K :
\square patches π^{1}, \ldots, π^{N} and
\square spline spaces V^{1}, \ldots, V^{N}.
■ Compute the least squares approximation $f=\sum_{\beta \in K} c_{\beta} \beta$, which minimizes

$$
\sum_{i=0}^{m}\left\|f_{i}-f\left(\mathbf{x}_{i}\right)\right\|^{2}
$$

How to choose the patches and corresponding spline spaces?

- Manual construction
- Automatic refinement process

Example I

We want to approximate the following function:

Function for approximation.

Manual mesh generation

TP

(T) HB

(T)PB

The meshes used for defining the approximating spline functions.

	no. of dof	\% of dof	max. error	average error
tensor-product B-splines	2916	100%	$3.08 \mathrm{e}-3$	$1.5 \mathrm{e}-4$
HB-splines	2468	85%	$3.08 \mathrm{e}-3$	$1.02 \mathrm{e}-4$
PB-splines	1572	54%	$1.03 \mathrm{e}-3$	$6.94 \mathrm{e}-5$

Numerical results of the least-squares approximation.

Automatic mesh refinement

- Initial setting defining K_{0}
\square patches $\pi^{1}, \ldots, \pi^{N_{0}}$ and
\square spline spaces $V_{0}^{1}, \ldots, V_{0}^{N_{0}}$.
- Compute least squares approximation for K_{0}
- Marking process:
\square Identify those \mathbf{x}_{i} with $\left\|f_{i}-f\left(\mathbf{x}_{i}\right)\right\|>\varepsilon$,
\square find the patches that contain \mathbf{x}_{i},mark them for refinement.
- Refinement process:
$\square n$-adic subdivision of the marked patches,
\square (poss. new marking process),
\square knot refinement in the corresponding spline spaces,
\square
ensure that all assumptions are satisfied.\square Challenge: Determine the direction of the refinement

Determining the refinement direction

Determining the refinement direction with a local fitting-based method:

- Perform local fitting on patches π^{ℓ}.

■ Try different refinement strategies, e.g., uniform knot refinement in x - vs. in y-direction.

■ The strategy that performs better, i.e., produces less error, determines the refinement direction.

Advantages:

- No assumptions on data,
- simple.

Disadvantages:
■ Could become slow if too many strategies are tested.

Automatic mesh refinement - results

PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

	no. of dof	\% of dof	max. error	average error
HB-splines	1860	100%	$3.08 \mathrm{e}-3$	$1.42 \mathrm{e}-4$
PB-splines	1106	59%	$1.12 \mathrm{e}-3$	$1.31 \mathrm{e}-4$

Automatic mesh refinement - results

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.

	no. of dof	\% of dof	max. error	average error
HB-splines	1860	100%	$3.08 \mathrm{e}-3$	$1.42 \mathrm{e}-4$
PB-splines	1106	59%	$1.12 \mathrm{e}-3$	$1.31 \mathrm{e}-4$

Example II

PB-spline mesh after 4 steps of adaptive refinement and resulting surface.

	no. of dof	\% of dof	max. error	average error
HB-splines	2688	100%	$1.01 \mathrm{e}-3$	$1.56 \mathrm{e}-4$
PB-splines	1169	43%	$1.06 \mathrm{e}-3$	$1.47 \mathrm{e}-4$

Example II

HB-spline mesh after 3 steps of adaptive refinement and resulting surface.

	no. of dof	\% of dof	max. error	average error
HB-splines	2688	100%	$1.01 \mathrm{e}-3$	$1.56 \mathrm{e}-4$
PB-splines	1169	43%	$1.06 \mathrm{e}-3$	$1.47 \mathrm{e}-4$

PATCHWORK B-SPLINES

SUMMARY AND OUTLOOK

Summary

■ Generalization of the Kraft selection mechanism from hierarchical B-splines to PB-splines

■ Characterization of the spline space spanned by the PB-splines

- Introduction of a truncation mechanism \rightarrow partition of unity
- Application of PB-splines to surface approximation
- Automatic refinement algorithm for PB-spline meshes
- PB-splines enable the use of independent refinement strategies

■ PB-splines need fewer degrees of freedom than HB-splines

Current work and outlook

- Generalizing the completeness result from HB-splines to PB-splines
- Generalizing the approximation error estimates from HB-splines to PB-splines
- Implementation of the truncation mechanism
- Development of further automatic mesh refinement strategies
- Application in industry
\square Fitting of structural components like airfoils \rightarrow periodic fitting
\square Lofting

