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Motivation: Stokes Equation

We study the Stokes Equation in one of its simplest forms:

−Δu −∇p = f,
∇ · u = 0,

where u is the velocity field, p is the (negative) pressure and f is
the volume forces.

The Stokes problem is a mathematical model problem for saddle
point problem and physical model equation for fluid dynamic.

We will consider the mathematical aspect of the problem.
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The Stokes problem

Strong formulation:
Given f(x) and g(x), find u(x) and p(x) such that the following
holds,

−Δu −∇p = f, ∀ x ∈ Ω,

∇ · u = 0, ∀ x ∈ Ω,

u = g, ∀ x ∈ Γ.

Where Ω is the domain and Γ = 𝜕Ω is the boundary.

Weak formulation:
Find (u, p) ∈ H1

g (Ω)× L2
0 (Ω), such that

(∇u,∇v)L2(Ω) + (p,∇ · v)L2(Ω) = (f, v)L2(Ω) ,

(∇ · u, q)L2(Ω) = 0

∀ (v, q) ∈ H1
0 × L2

0 (Ω).
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The Stokes problem

More abstractly written we have:

Find (u, p) ∈ V × Q, such that

a (u, v) + b (p, v) = (f, v)L2(Ω) , ∀ v ∈ V

b (q,u) = 0 ∀ q ∈ Q,

where,

a (u, v) = (∇u,∇v)L2(Ω) and b (q, v) = (q,∇ · v)L2(Ω) .

We can also write it as(︂
A B*

B 0

)︂(︂
u
p

)︂
=

(︂
f
0

)︂
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Brezzi’s conditions:

Boundedness of a(·, ·):

a (u, v) ≤ C1‖u‖V ‖v‖V ∀u, v ∈ V . (1)

Boundedness of b(·, ·):

b (q, v) ≤ C2‖q‖Q‖v‖V ∀ (q, v) ∈ Q × V . (2)

Coercivity of a(·, ·):

a (u,u) ≥ C3‖u‖2
V ∀u ∈ V . (3)

Coercivity of b(·, ·) (inf-sup):

sup
v∈V

b (q, v)
‖v‖V

≥ C4‖q‖Q ∀ q ∈ Q (4)

The weak problem has a unique solution (u, p) ∈ H1
g (Ω)× L2

0 (Ω).
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Discrete conditions:

If we use conforming discretization; that is, Vh ⊂ V and Qh ⊂ Q
then the three first conditions holds in the discrate case.

If the discretization spaces are Vh = S × S × S and Qh = S , for
some spline space S , then the discrate inf-sup condition does not
hold:

sup
vh∈Vh

(qn,∇ · vh)

‖vh‖Vh

≥C4‖qh‖Qh ∀ qh ∈ Qh.

We need a discretization that is satisfy the discrete inf-sup
condition!
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IGA discretization

Let ℳh be the parametric mech, Q an element in ℳh.

Tensor product B–spline basis function:

Bk1,k2,k3
i1,i2,i3 := Bk1

i1 ⊗ Bk2
i2 ⊗ Bk3

i4 .

Tensor product B–spline space

Sk1,k2,k3
𝛼1,𝛼2,𝛼3

(ℳh) :=
{︁

Bk1,k2,k3
i1,i2,i3

}︁n1,n2,n3

i1,i2,i3=1

Assume Ω can be exactly parametrized by a geometrical mapping:

F (̂︀x) : ̂︀Ω → Ω,

𝒦h = {K : K ∈ F (Q) ,Q ∈ ℳh} , hK := ‖DF‖L∞(Q)hQ .
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Discrete Spaces: TH and RT spaces
We define the Taylor–Hood spaces as

̂︀𝒱TH
h := Sk1+1,k2+1,k3+1

𝛼1,𝛼2,𝛼3
× Sk1+1,k2+1,k3+1

𝛼1,𝛼2,𝛼3
× Sk1+1,k2+1,k3+1

𝛼1,𝛼2,𝛼3
,̂︀𝒬TH

h := Sk1,k2,k3
𝛼1,𝛼2,𝛼3

.

This discretization is stable, proved by Dr. Bressan. Note that the splines in ̂︀𝒱TH
h are

not of maximum continuity.

We define the generalized Raviart–Thomas spaces as in Buffa et al. [2011], Evans
and Hughes [2013a,b,c]

̂︀𝒱RT
h := Sk1+1,k2,k3

𝛼1+1,𝛼2,𝛼3
× Sk1,k2+1,k3

𝛼1,𝛼2+1,𝛼3
× Sk1,k2,k3+1

𝛼1,𝛼2,𝛼3+1,̂︀𝒬RT
h := Sk1,k2,k3

𝛼1,𝛼2,𝛼3
.

We constrain RT spaces as

̂︀𝒱RT
0,h :=

{︁̂︀v ∈ ̂︀𝒱RT
h : ̂︀v · ̂︀n = 0 on 𝜕̂︀Ω}︁ ,

̂︀𝒬RT
0,h :=

{︂̂︀q ∈ ̂︀𝒬RT
h :

∫︁
̂︀Ω ̂︀q d̂︀x = 0

}︂
.

The RT spaces and it’s constraind spaces form a bounded discrete cochain complex
with the divergence operator:

̂︀𝒱RT
h

̂︁div−−→ ̂︀𝒬RT
h and ̂︀𝒱RT

0,h
̂︁div−−→ ̂︀𝒬RT

0,h
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Properties of RT spaces

Theorem

The discrete inf-sup condition holds for ̂︀𝒱RT
0,h and ̂︀𝒬RT

0,h .

Proof.
Blackboard! Braess [2007]

Theorem

If ̂︀vh ∈ ̂︀𝒱RT
0,h satisfies

(∇ · ̂︀vh,̂︀qh)L2(Ω) = 0 ∀̂︀qh ∈ ̂︀𝒬RT
0,h

then ∇ · ̂︀vh = 0.

That is, the discretization gives velocity fields which are pointwise
divergence-free.
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Violation of the inf-sup condition

What happens if we strongly impose the full Dirichlet boudary condotions? That is,
we set the constraind spaces to be

̂︀𝒱RT
0,h :=

{︁̂︀v ∈ ̂︀𝒱RT
h : ̂︀v = 0 on 𝜕̂︀Ω}︁ ,

̂︀𝒬RT
0,h :=

{︂̂︀q ∈ ̂︀𝒬RT
h :

∫︁
̂︀Ω ̂︀q d̂︀x = 0

}︂
.

The mapping ̂︀𝒱RT
0,h

̂︁div−−→ ̂︀𝒬RT
0,h is not surjective. Hence there exists a ̂︀qh ∈ ̂︀𝒬RT

0,h such
that ̂︀qh ̸= 0 and

sup̂︀vh∈̂︀𝒱RT
0,h

(∇ · ̂︀vh,̂︀qh)L2(̂︀Ω)
‖̂︀vh‖H1(̂︀Ω)‖̂︀qh‖L2(̂︀Ω) = 0,

that is; the inf-sup condition does not holds!

We cannot strongly impose the full Dirichlet boudary conditions
with this methodology.
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Divergence preserving transformation

For the pressure we use the standard IGA inverse composition

q = ℱ (̂︀q) = ̂︀q ∘ ̂︀F−1, ∀̂︀q ∈ L2
0

(︁̂︀Ω)︁ .

For the velocity field we use the divergence preserving transformation

v = ℱdiv (̂︀v) = J
det J

̂︀v ∘ ̂︀F−1, ∀̂︀v ∈ H0

(︁̂︁div; ̂︀Ω)︁ ,

where J is the jacobian. This is sometimes called the contravariant Piola
transformation. It has the important property that preserves the divergence.
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Inverse composition transformation

Parametric domain

ℱ−−−−→

Physical domain
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Divergence preserving transformation

Parametric domain

ℱdiv
−−−−−→

Physical domain
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Divergence preserving transformation

The divergence preserving transformation is much more
complicated to use:

Standard inverse composition:

q = ℱ (̂︀q) = ̂︀q ∘ ̂︀F−1

∇q = J−T ̂︀∇̂︀q
Divergence preserving transformation:

v = ℱdiv (̂︀v) = J
det J

̂︀v ∘ ̂︀F−1

∇v =
1

det J
J ̂︀∇̂︀v J−T +

1
det J

d∑︁
i=1

∇Ĵ︀v − ∇ det J
det J2 Ĵ︀v
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complicated to use:
Standard inverse composition:

q = ℱ (̂︀q) = ̂︀q ∘ ̂︀F−1

∇q = J−T ̂︀∇̂︀q
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References

Divergence preserving transformation

The divergence preserving transformation is much more
complicated to use:
Standard inverse composition:

q = ℱ (̂︀q) = ̂︀q ∘ ̂︀F−1

∇q = J−T ̂︀∇̂︀q
Divergence preserving transformation:

v = ℱdiv (̂︀v) = J
det J

̂︀v ∘ ̂︀F−1

∇v =
1

det J
J ̂︀∇̂︀v J−T +

1
det J

d∑︁
i=1
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Matrix properties

⎛⎜⎜⎝
A11 0 0 BT

1
0 A22 0 BT

2
0 0 A33 BT

3
B1 B2 B3 0

⎞⎟⎟⎠
System matrix when using
inverse composition
transformation. The zero
blocks comes from
component preserving
transformation.

⎛⎜⎜⎝
A11 A12 A13 BT

1
A21 A22 A23 BT

2
A31 A32 A33 BT

3
B1 B2 B3 0

⎞⎟⎟⎠
System matrix when using
divergence preserving
transformation. This
matrix is denser.
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The Nitsche method

We need to weakly impose the tangential components of the Dirichlet boundary
conditions.

We use the Nitsche method to weakly impose the whole Dirichlet boundary
conditions.

We redefine the bilinear forms to

ah (uh,uh) = (∇uh,∇vh)Ω − (n · ∇uh, vh)Γ − (n · ∇vh,uh)Γ +
∑︁
F∈Γh

∫︁
F

CN

hF
uh · vhdS ,

bh (ph, vh) = (ph,∇ · uh)Ω − (vh · n, ph)Γ

and add correct term on the right hand side.
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Nitsche penalty term

The pressure error asymptotically scales with the square root of CN
[Evans and Hughes, 2013a]. So we need to put a good value for
CN . Evans suggests

CN = 5 (k + 1) ,

where k = min{k1, k2, k3}.

Evans and Hughes [2013d] gives an explicit choice for CN depending
on shape, size, polynomial degree, and the NURBS weighting.
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Testing the Nitsche penalty with manufactured solutions

The test problem:

Ω is an quarte annulus ⊂
{︀
(x , y) ∈ R2| x , y ∈ (0, 2)

}︀
,

u = ∇×
(︀
sin2(𝜋x/2) sin2(𝜋y/2)

)︀
,

p = − sin(𝜋x),
f = −Δu −∇p,
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Nitsche penalty parameter

3 refinements, k = 2,
CN/hF = 632,
L2-error velocity: 0.0119,
L2-error pressure: 0.24123

3 refinements, k = 2,
CN/hF = 120,
L2-error velocity: 0.0118,
L2-error pressure: 0.06309
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Nitsche penalty parameter

5 refinements, k = 2,
CN/hF = 2297,
L2-error velocity: 0.0001214,
L2-error pressure: 0.00315

5 refinements, k = 2,
CN/hF = 480,
L2-error velocity: 0.0001236,
L2-error pressure: 0.00080
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L2-error: k = 2 (velocity and pressure)

# Refined 2 3 4 5 rate avg rate
Velocity 5.01e-02 1.18e-02 1.08e-03 1.24e-04 3.27 3.29
Pressure 2.08e-01 6.31e-02 6.44e-03 8.00e-04 3.04 3.16



References

References

A Buffa, C De Falco, and G Sangalli. Isogeometric analysis: stable elements for the 2d
Stokes equation. International Journal for Numerical Methods in Fluids, 65(11-12):
1407–1422, 2011.

J A Evans and T JR Hughes. Isogeometric divergence-conforming B-splines for the
Darcy–Stokes–Brinkman equations. Mathematical Models and Methods in Applied
Sciences, 23(04):671–741, 2013a.

J A Evans and T JR Hughes. Isogeometric divergence-conforming B-splines for the
steady Navier–Stokes equations. Mathematical Models and Methods in Applied
Sciences, 23(08):1421–1478, 2013b.

J A Evans and T JR Hughes. Isogeometric divergence-conforming B-splines for the
unsteady Navier–Stokes equations. Journal of Computational Physics, 241:
141–167, 2013c.

D Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics.
Cambridge University Press, 2007.

J A Evans and T JR Hughes. Explicit trace inequalities for isogeometric analysis and
parametric hexahedral finite elements. Numerische Mathematik, 123:259–290,
2013d.


