Solution Mappings for Variational Problems

Wolfgang Stockinger

Seminar Numerik

November 24, 2015

Overview

(1) Generalized Equations and Variational Problems
(2) Implicit Function Theorems for Generalized Equations

Generalized Equations

A condition on x of the form

$$
f(x)+F(x) \ni 0 \Longleftrightarrow-f(x) \in F(x)
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ is called generalized equation.

Examples:

- The zero mapping: $F \equiv 0$
- $F \equiv N_{C}$

Normal Cones

Definition

For a convex set $C \subset \mathbb{R}^{n}$ and a point $x \in C$, a vector v is said to be normal to C at x if $\left\langle v, x^{\prime}-x\right\rangle \leq 0$ for all $x^{\prime} \in C$. The set of all such vectors v is called the normal cone to C at x and is denoted by $N_{C}(x)$. For $x \notin C, N_{C}(x)$ is taken to be the empty set.

Variational inequalities

Definition

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a closed convex set $C \subset \operatorname{dom} f$ the generalized equation

$$
f(x)+N_{C}(x) \ni 0
$$

is called the variational inequality for f and C.
This definition is equivalent to the expression

$$
x \in C, \quad\left\langle f(x), x^{\prime}-x\right\rangle \geq 0 \quad \forall x^{\prime} \in C
$$

Projection Mapping

A relation between the normal cone mapping N_{C} and the Projection mapping P_{C} is given by the following equivalence:

$$
v \in N_{C}(x) \Longleftrightarrow P_{C}(x+v)=x
$$

The variational inequality can actually be written as an equation, namely

$$
f(x)+N_{C}(x) \ni 0 \Longleftrightarrow P_{C}(x-f(x))-x=0 .
$$

Solutions to Variational Inequalities

Theorem (Solutions to Variational Inequalities)

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a nonempty, closed convex set $C \subset \operatorname{dom} f$ relative to which f is continuous, the set of solutions to the variational inequality is always closed. It is sure to be nonempty when C is bounded.

Polar Cone

Theorem

Let K be a closed, convex cone and let K^{*} be its polar, defined by

$$
K^{*}=\{y \mid\langle x, y\rangle \leq 0 \quad \forall x \in K\} .
$$

Then K^{*} is likewise a closed, convex cone, and its polar $\left(K^{*}\right)^{*}$ is in turn K. Furthermore the normal vectors to K and K^{*} are related by

$$
y \in N_{K}(x) \Longleftrightarrow x \in N_{K^{*}}(y) \Longleftrightarrow x \in K, \quad y \in K^{*}, \quad\langle x, y\rangle=0 .
$$

Normal Cone/Tangent Cone

Figure: Normal and Tangent Cone to a convex set

Optimization Problems

For an objective function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a constraint set $C \subset \mathbb{R}^{n}$ we consider a problem of the form

$$
\text { minimize } g(x), x \in C
$$

Theorem (Basic Variational Inequality for Minimization)

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable on an open convex set O, and let C be a closed convex subset of O. In minimizing g over C, the variational inequality

$$
\nabla g(x)+N_{C}(x) \ni 0
$$

is necessary for x to furnish a local minimum. It is both necessary and sufficient for a global minimum if g is convex.

Remarks

- When $C=\mathbb{R}^{n}$ we are dealing with unconstrained optimization
- The projection $x=P_{C}(z)$ is the solution to the minimization problem

$$
\operatorname{minimize} g(x)=\frac{1}{2}|x-z|^{2}
$$

- If $C=C_{1} \cap C_{2}$ for closed, convex sets C_{1} and C_{2} in \mathbb{R}^{n}, then the formula

$$
N_{C}(x)=N_{C_{1}}(x)+N_{C_{2}}(x)=\left\{v_{1}+v_{2} \mid v_{1} \in N_{C_{1}}(x), v_{2} \in N_{C_{2}}(x)\right\}
$$

holds for every $x \in C$ such that there is no $v \neq 0$ with $v \in N_{C_{1}}(x)$ and $-v \in N_{C_{2}}(x)$

Lagrangian Variational Inequalities

Theorem (Lagrange Multiplier Rule)

Let $X \subset \mathbb{R}^{n}$ and $D \subset \mathbb{R}^{m}$ be nonempty, closed, convex sets and consider the problem

$$
\operatorname{minimize} \quad g_{0}(x), \quad x \in C=\{x \in X \mid g(x) \in D\}
$$

for $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$, where the functions
$g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=0, \ldots, m$ are continuously differentiable. Let x be a point of C at which the following constraint qualification condition is fulfilled:
there is no $y \in N_{D}(g(x)), y \neq 0$, such that $-y \nabla g(x) \in N_{X}(x)$
If g_{0} has a local minimum relative to C at x, then there exists

$$
y \in N_{D}(g(x)), \text { such that }-\left[\nabla g_{0}(x)+y \nabla g(x)\right] \in N_{X}(x)
$$

Remarks

- In the first order optimality condition y is said to be a Lagrange multiplier vector associated with x
- This condition can be reformulated by using the Lagrangian function, which is defined by

$$
L(x, y)=g_{0}(x)+y_{1} g_{1}(x)+\ldots+y_{m} g_{m}(x)
$$

for $y=\left(y_{1}, \ldots, y_{m}\right)$.

Lagrangian Variational Inequalities

Theorem

In the previous minimization problem, suppose that the set D is a cone, and let Y be the polar cone D^{*},

$$
Y=\{y \mid\langle u, y\rangle, \quad \forall u \in D\}
$$

Then, in terms of the Lagrangian function, the condition on x and y can be written in the form

$$
-\nabla_{x} L(x, y) \in N_{X}(x), \quad \nabla_{y} L(x, y) \in N_{Y}(y)
$$

which furthermore can be identified with the variational inequality

$$
\left(-\nabla_{x} L(x, y), \nabla_{y} L(x, y)\right) \in N_{X \times Y}(x, y) .
$$

The existence of $y \in Y$ satisfying this variational inequality with x is thus necessary for the local optimality of x.

Standard problem of nonlinear programming

Consider the problem

$$
\text { minimize } g_{0}(x), \quad g_{i}(x) \begin{cases}\leq 0, & \text { for } i \in[1, s] \\ =0, & \text { for } i \in[s+1, m]\end{cases}
$$

- $X=\mathbb{R}^{n}$
- D is the cone consisting of all $u=\left(u_{1}, \ldots, u_{m}\right)$, such that $u_{i} \leq 0$ for $i \in[1, s]$ but $u_{i}=0$ for $i \in[s+1, m]$.
- $D^{*}=Y=\mathbb{R}_{+}^{s} \times \mathbb{R}^{m-s}$

The requirements for x and y are therefore

$$
\begin{aligned}
& y \in \mathbb{R}_{+}^{s} \times \mathbb{R}^{m-s}, \quad g_{i}(x) \begin{cases}\leq 0, & \text { for } i \in[1, s] \text { for } y_{i}=0 \\
=0, & \text { for all other } i \in[1, m]\end{cases} \\
& \nabla_{x} L(x, y)=0 .
\end{aligned}
$$

Solution mapping

The object of study is now a parameterized generalized equation

$$
f(p, x)+F(x) \ni 0
$$

We consider the properties of the solution mapping $S: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
S: p \rightarrow\{x \mid f(p, x)+F(x) \ni 0\} \text { for } p \in \mathbb{R}^{d}
$$

We first identify F with N_{C}, with $C \subset \mathbb{R}^{n}$ convex, closed and nonempty.

Theorem (Robinson Implicit Function Theorem)

For the solution mapping S to a parameterized variational inequality, consider a pair (\bar{p}, \bar{x}) with $\bar{x} \in S(\bar{p})$. Assume that:

- $f(p, x)$ is differentiable with respect to x in a neighbourhood of the point (\bar{p}, \bar{x}), and both $f(p, x)$ and $\nabla_{x} f(p, x)$ depend continuously on (p, x) in this neighbourhood;
- the inverse G^{-1} of the set valued mapping $G: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
G(x)=f(\bar{p}, \bar{x})+\nabla_{x} f(\bar{p}, \bar{x})(x-\bar{x})+N_{C}(x), \text { with } G(\bar{x}) \ni 0,
$$

has a Lipschitz continuous single-valued localization σ around 0 for \bar{x} with

$$
\operatorname{lip}(\sigma ; 0) \leq \kappa .
$$

Then S has a single-valued localization s around \bar{p} for \bar{x} which is continuous at \bar{p}, and moreover for every $\epsilon>0$ there is a neighbourhood Q of \bar{p} such that

$$
\left|s\left(p^{\prime}\right)-s(p)\right| \leq(\kappa+\epsilon)\left|f\left(p^{\prime}, s(p)\right)-f(p, s(p))\right| \text { for all } p^{\prime}, p \in Q
$$

Remarks

- If f is Lipschitz w.r.t. $p \Rightarrow s$ Lipschitz around \bar{p}
- If $C=\mathbb{R}^{n} \Rightarrow f(p, x)=0$.
- The condition on G reduces in this case to the nonsingularity of the Jacobian $\nabla_{x} f(\bar{p}, \bar{x})$.

Theorem (Robinson Theorem Extended Beyond Differentiability)

For a generalized equation and its solution mapping S, let \bar{p} and \bar{x} be such that $\bar{x} \in S(\bar{p})$. Assume that:

- $f(., \bar{x})$ is continuous at \bar{p}, and h is a strict estimator of f with respect to x uniformly in p at (\bar{p}, \bar{x}) with a constant μ;
- the inverse of G^{-1} of the mapping $G=h+F$, for which $G(\bar{x}) \ni 0$, has a Lipschitz continuous single-valued localization σ around 0 for \bar{x} with lip $(\sigma ; 0) \leq \kappa$ for a constant κ such that $\kappa \mu<1$.
Then S has a single valued localization s around \bar{p} for \bar{x} which is continuous at \bar{p}, and moreover for every $\epsilon>0$ there is a neighbourhood Q of \bar{p} such that

$$
\left|s\left(p^{\prime}\right)-s(p)\right| \leq \frac{\kappa+\epsilon}{1-\kappa \mu}\left|f\left(p^{\prime}, s(p)\right)-f(p, s(p))\right| \text { for all } p^{\prime}, p \in Q
$$

Theorem (Contracting Mapping Principle)

Consider a function $\varphi: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and a point $(\bar{p}, \bar{x}) \in \operatorname{int} \operatorname{dom} \varphi$ and let the scalars $\nu \geq 0, b \geq 0, a>0$ and the set $Q \subset \mathbb{R}^{d}$ be such that $\bar{p} \in Q$ and

$$
\begin{array}{r}
\left|\varphi\left(p, x^{\prime}\right)-\varphi(p, x)\right| \leq \nu\left|x-x^{\prime}\right| \text { for all } x^{\prime}, x \in \mathbb{B}_{a}(\bar{x}) \text { and } p \in Q, \\
|\varphi(p, \bar{x})-\varphi(\bar{p}, \bar{x})| \leq b \text { for all } p \in Q .
\end{array}
$$

Consider a set-valued mapping $M: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n}$ with $(\bar{y}, \bar{x}) \in \operatorname{gph} M$ where $\bar{y}:=\varphi(\bar{p}, \bar{x})$, such that for each $y \in \mathbb{B}_{\nu a+b}(\bar{y})$ the set $M(y) \cap \mathbb{B}_{a}(\bar{x})$ consists of exactly one point, denoted by $r(y)$, and suppose that the function

$$
r: y \rightarrow M(y) \cap \mathbb{B}_{a}(\bar{x}) \text { for } y \in \mathbb{B}_{\nu a+b}(\bar{y})
$$

is Lipschitz continuous on $\mathbb{B}_{\nu a+b}(\bar{y})$ with a Lipschitz constant λ. In addition suppose that

- $\lambda \nu<1$;
- $\lambda \nu a+\lambda b \leq a$

Theorem (Contracting Mapping Principle)

Then for each $p \in Q$ the set $\left\{x \in \mathbb{B}_{a}(\bar{x}) \mid x \in M(\varphi(p, x))\right\}$ consists of exactly one point and the associated function

$$
s: p \rightarrow\left\{x \mid x=M(\varphi(p, x)) \cap \mathbb{B}_{a}(\bar{x})\right\} \text { for } p \in Q
$$

satisfies

$$
\left|s\left(p^{\prime}\right)-s(p)\right| \leq \frac{\lambda}{1-\lambda \nu}\left|\varphi\left(p^{\prime}, s(p)\right)-\varphi(p, s(p))\right| \text { for all } p^{\prime}, p \in Q
$$

Proof

Fix $p \in Q$ and define a function $\Phi_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
\Phi_{p}: x \rightarrow r(\varphi(p, x)) \text { for } x \in \mathbb{B}_{a}(\bar{x})
$$

Let now $x, x^{\prime} \in \mathbb{B}_{a}(\bar{x})$.

- Note that one has $|\bar{y}-\varphi(p, x)| \leq b+\nu a$
- $\left|\Phi_{p}(\bar{x})-\bar{x}\right| \leq a(1-\lambda \nu)$
- $\left|\Phi_{p}\left(x^{\prime}\right)-\Phi_{p}(x)\right| \leq \lambda \nu\left|x^{\prime}-x\right|$
$\Longrightarrow \Phi_{p}$ is Lipschitz continuous and has a unique fixed point $s(p)$ in $\mathbb{B}_{a}(\bar{x})$. Doing this for every $p \in Q$, we get a function $s: Q \rightarrow \mathbb{B}_{a}(\bar{x})$.
- $x=\Phi_{p}(x) \Longleftrightarrow x=r(\varphi(p, x))=M(\varphi(p, x)) \cap \mathbb{B}_{a}(\bar{x})$
- Since $s(p)=r(\varphi(p, s(p)))$ we get the estimate for $\left|s\left(p^{\prime}\right)-s(p)\right|$ by using triangular inequality, Lipschitz continuity of r and the estimates for φ.

Theorem

Let X be a Banach space and $\bar{x} \in X$. Consider a function $\Phi: X \rightarrow X$ for which there exist scalars a >0 and $\lambda \in[0,1)$ such that:

- $|\Phi(\bar{x})-\bar{x}| \leq a(1-\lambda)$;
- $\left|\Phi\left(x^{\prime}\right)-\Phi(x)\right| \leq \lambda\left|x^{\prime}-x\right|$ for every $x, x^{\prime} \in \mathbb{B}_{a}(\bar{x})$.

Then Φ has unique fixed point in $\mathbb{B}_{a}(\bar{x})$

Proof for the Robinson Theorem

For a fixed $\epsilon>0$ choose $\lambda>\operatorname{lip}(\sigma ; 0), \nu>\mu$ such that $\lambda \nu<1$

$$
\frac{\lambda}{1-\lambda \nu} \leq \frac{\kappa+\epsilon}{1-\kappa \mu}
$$

Choose positive numbers a, b, c such that

- $\left|\sigma(y)-\sigma\left(y^{\prime}\right)\right| \leq \lambda\left|y-y^{\prime}\right|$ for $y, y^{\prime} \in \mathbb{B}_{a \nu+b}(0)$
- $\left|e\left(p, x^{\prime}\right)-e(p, x)\right| \leq \nu\left|x-x^{\prime}\right|$ for $x, x^{\prime} \in \mathbb{B}_{a}(\bar{x})$ and $p \in \mathbb{B}_{c}(\bar{p})$
- $|f(p, \bar{x})-f(\bar{p}, \bar{x})| \leq b$ for $p \in \mathbb{B}_{c}(\bar{p})$

Set $r=\sigma, M=(h+F)^{-1}, \bar{y}=0$ and $\varphi=-e$. Furthermore observe that

$$
x \in(h+F)^{-1}(-e(p, x)) \Longleftrightarrow x \in S(p) .
$$

By the contracting mapping principle we obtain that the solution mapping S has a single-valued localization around \bar{p} for \bar{x}

