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Generalized Equations

A condition on x of the form

f (x) + F (x) 3 0⇐⇒ −f (x) ∈ F (x),

with f : Rn → Rm and F : Rn ⇒ Rm is called generalized equation.

Examples:

The zero mapping: F ≡ 0

F ≡ NC
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Normal Cones

Definition

For a convex set C ⊂ Rn and a point x ∈ C , a vector v is said to be
normal to C at x if 〈v , x ′ − x〉 ≤ 0 for all x ′ ∈ C . The set of all such
vectors v is called the normal cone to C at x and is denoted by NC (x).
For x 6∈ C , NC (x) is taken to be the empty set.
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Variational inequalities

Definition

For a function f : Rn → Rn and a closed convex set C ⊂ dom f the
generalized equation

f (x) + NC (x) 3 0

is called the variational inequality for f and C .

This definition is equivalent to the expression

x ∈ C , 〈f (x), x ′ − x〉 ≥ 0 ∀x ′ ∈ C .
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Projection Mapping

A relation between the normal cone mapping NC and the Projection
mapping PC is given by the following equivalence:

v ∈ NC (x)⇐⇒ PC (x + v) = x

The variational inequality can actually be written as an equation, namely

f (x) + NC (x) 3 0⇐⇒ PC (x − f (x))− x = 0.
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Solutions to Variational Inequalities

Theorem (Solutions to Variational Inequalities)

For a function f : Rn → Rn and a nonempty, closed convex set C ⊂ dom f
relative to which f is continuous, the set of solutions to the variational
inequality is always closed. It is sure to be nonempty when C is bounded.
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Polar Cone

Theorem

Let K be a closed, convex cone and let K ∗ be its polar, defined by

K ∗ = {y | 〈x , y〉 ≤ 0 ∀x ∈ K}.

Then K ∗ is likewise a closed, convex cone, and its polar (K ∗)∗ is in turn
K. Furthermore the normal vectors to K and K ∗ are related by

y ∈ NK (x)⇐⇒ x ∈ NK∗(y)⇐⇒ x ∈ K , y ∈ K ∗, 〈x , y〉 = 0.
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Normal Cone/Tangent Cone

Figure: Normal and Tangent Cone to a convex set
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Optimization Problems

For an objective function g : Rn → R and a constraint set C ⊂ Rn we
consider a problem of the form

minimize g(x), x ∈ C

Theorem (Basic Variational Inequality for Minimization)

Let g : Rn → R be differentiable on an open convex set O, and let C be a
closed convex subset of O. In minimizing g over C , the variational
inequality

∇g(x) + NC (x) 3 0,

is necessary for x to furnish a local minimum. It is both necessary and
sufficient for a global minimum if g is convex.
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Remarks

When C = Rn we are dealing with unconstrained optimization

The projection x = PC (z) is the solution to the minimization problem

minimize g(x) =
1

2
|x − z |2

If C = C1 ∩ C2 for closed, convex sets C1 and C2 in Rn, then the
formula

NC (x) = NC1(x) + NC2(x) = {v1 + v2 | v1 ∈ NC1(x), v2 ∈ NC2(x)}

holds for every x ∈ C such that there is no v 6= 0 with v ∈ NC1(x)
and −v ∈ NC2(x)
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Lagrangian Variational Inequalities

Theorem (Lagrange Multiplier Rule)

Let X ⊂ Rn and D ⊂ Rm be nonempty, closed, convex sets and consider
the problem

minimize g0(x), x ∈ C = {x ∈ X | g(x) ∈ D},

for g(x) = (g1(x), . . . , gm(x)), where the functions
gi : Rn → R, i = 0, . . . ,m are continuously differentiable. Let x be a point
of C at which the following constraint qualification condition is fulfilled:

there is no y ∈ ND(g(x)), y 6= 0, such that − y∇g(x) ∈ NX (x)

If g0 has a local minimum relative to C at x, then there exists

y ∈ ND(g(x)), such that − [∇g0(x) + y∇g(x)] ∈ NX (x).
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Remarks

In the first order optimality condition y is said to be a Lagrange
multiplier vector associated with x

This condition can be reformulated by using the Lagrangian function,
which is defined by

L(x , y) = g0(x) + y1g1(x) + . . .+ ymgm(x)

for y = (y1, . . . , ym).
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Lagrangian Variational Inequalities

Theorem

In the previous minimization problem, suppose that the set D is a cone,
and let Y be the polar cone D∗,

Y = {y | 〈u, y〉, ∀u ∈ D}.

Then, in terms of the Lagrangian function, the condition on x and y can
be written in the form

−∇xL(x , y) ∈ NX (x), ∇yL(x , y) ∈ NY (y),

which furthermore can be identified with the variational inequality

(−∇xL(x , y),∇yL(x , y)) ∈ NX×Y (x , y).

The existence of y ∈ Y satisfying this variational inequality with x is thus
necessary for the local optimality of x.
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Standard problem of nonlinear programming

Consider the problem

minimize g0(x), gi (x)

{
≤ 0, for i ∈ [1, s]
= 0, for i ∈ [s + 1,m]

X = Rn

D is the cone consisting of all u = (u1, . . . , um), such that ui ≤ 0 for
i ∈ [1, s] but ui = 0 for i ∈ [s + 1,m].

D∗ = Y = Rs
+ × Rm−s

The requirements for x and y are therefore

y ∈ Rs
+ × Rm−s , gi (x)

{
≤ 0, for i ∈ [1, s] for yi = 0
= 0, for all other i ∈ [1,m]

∇xL(x , y) = 0.
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Solution mapping

The object of study is now a parameterized generalized equation

f (p, x) + F (x) 3 0

We consider the properties of the solution mapping S : Rd ⇒ Rn defined
by

S : p → {x | f (p, x) + F (x) 3 0} for p ∈ Rd .

We first identify F with NC , with C ⊂ Rn convex, closed and nonempty.
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Theorem (Robinson Implicit Function Theorem)

For the solution mapping S to a parameterized variational inequality,
consider a pair (p̄, x̄) with x̄ ∈ S(p̄). Assume that:

f (p, x) is differentiable with respect to x in a neighbourhood of the
point (p̄, x̄), and both f (p, x) and ∇x f (p, x) depend continuously on
(p, x) in this neighbourhood;

the inverse G−1 of the set valued mapping G : Rn ⇒ Rn defined by

G (x) = f (p̄, x̄) +∇x f (p̄, x̄)(x − x̄) + NC (x), with G (x̄) 3 0,

has a Lipschitz continuous single-valued localization σ around 0 for x̄
with

lip(σ; 0) ≤ κ.

Then S has a single-valued localization s around p̄ for x̄ which is
continuous at p̄, and moreover for every ε > 0 there is a
neighbourhood Q of p̄ such that∣∣s(p′)− s(p)

∣∣ ≤ (κ+ ε)
∣∣f (p′, s(p))− f (p, s(p))

∣∣ for all p′, p ∈ Q.
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Remarks

If f is Lipschitz w.r.t. p ⇒ s Lipschitz around p̄

If C = Rn ⇒ f (p, x) = 0.

The condition on G reduces in this case to the nonsingularity of the
Jacobian ∇x f (p̄, x̄).
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Theorem (Robinson Theorem Extended Beyond Differentiability)

For a generalized equation and its solution mapping S, let p̄ and x̄ be such
that x̄ ∈ S(p̄). Assume that:

f (., x̄) is continuous at p̄, and h is a strict estimator of f with respect
to x uniformly in p at (p̄, x̄) with a constant µ;

the inverse of G−1 of the mapping G = h + F , for which G (x̄) 3 0,
has a Lipschitz continuous single-valued localization σ around 0 for x̄
with lip(σ; 0) ≤ κ for a constant κ such that κµ < 1.

Then S has a single valued localization s around p̄ for x̄ which is
continuous at p̄, and moreover for every ε > 0 there is a neighbourhood Q
of p̄ such that∣∣s(p′)− s(p)

∣∣ ≤ κ+ ε

1− κµ
∣∣f (p′, s(p))− f (p, s(p))

∣∣ for all p′, p ∈ Q.

Wolfgang Stockinger November 24, 2015 19 / 24



Theorem (Contracting Mapping Principle)

Consider a function ϕ : Rd ×Rn → Rm and a point (p̄, x̄) ∈ int domϕ and
let the scalars ν ≥ 0, b ≥ 0, a > 0 and the set Q ⊂ Rd be such that p̄ ∈ Q
and ∣∣ϕ(p, x ′)− ϕ(p, x)

∣∣ ≤ ν ∣∣x − x ′
∣∣ for all x ′, x ∈ Ba(x̄) and p ∈ Q,

|ϕ(p, x̄)− ϕ(p̄, x̄)| ≤ b for all p ∈ Q.

Consider a set-valued mapping M : Rm ⇒ Rn with (ȳ , x̄) ∈ gphM where
ȳ := ϕ(p̄, x̄), such that for each y ∈ Bνa+b(ȳ) the set M(y) ∩ Ba(x̄)
consists of exactly one point, denoted by r(y), and suppose that the
function

r : y → M(y) ∩ Ba(x̄) for y ∈ Bνa+b(ȳ)

is Lipschitz continuous on Bνa+b(ȳ) with a Lipschitz constant λ. In
addition suppose that

λν < 1;

λνa + λb ≤ a
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Theorem (Contracting Mapping Principle)

Then for each p ∈ Q the set {x ∈ Ba(x̄) | x ∈ M(ϕ(p, x))} consists of
exactly one point and the associated function

s : p → {x | x = M(ϕ(p, x)) ∩ Ba(x̄)} for p ∈ Q

satisfies∣∣s(p′)− s(p)
∣∣ ≤ λ

1− λν
∣∣ϕ(p′, s(p))− ϕ(p, s(p))

∣∣ for all p′, p ∈ Q.
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Proof

Fix p ∈ Q and define a function Φp : Rn → Rm by

Φp : x → r(ϕ(p, x)) for x ∈ Ba(x̄).

Let now x , x ′ ∈ Ba(x̄).

Note that one has |ȳ − ϕ(p, x)| ≤ b + νa

|Φp(x̄)− x̄ | ≤ a(1− λν)

|Φp(x ′)− Φp(x)| ≤ λν |x ′ − x |

=⇒ Φp is Lipschitz continuous and has a unique fixed point s(p) in Ba(x̄).
Doing this for every p ∈ Q, we get a function s : Q → Ba(x̄).

x = Φp(x)⇐⇒ x = r(ϕ(p, x)) = M(ϕ(p, x)) ∩ Ba(x̄)

Since s(p) = r(ϕ(p, s(p))) we get the estimate for |s(p′)− s(p)| by
using triangular inequality, Lipschitz continuity of r and the estimates
for ϕ.
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Theorem

Let X be a Banach space and x̄ ∈ X. Consider a function Φ : X → X for
which there exist scalars a > 0 and λ ∈ [0, 1) such that:

|Φ(x̄)− x̄ | ≤ a(1− λ);

|Φ(x ′)− Φ(x)| ≤ λ |x ′ − x | for every x , x ′ ∈ Ba(x̄).

Then Φ has unique fixed point in Ba(x̄)
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Proof for the Robinson Theorem

For a fixed ε > 0 choose λ > lip(σ; 0), ν > µ such that λν < 1

λ

1− λν
≤ κ+ ε

1− κµ

Choose positive numbers a, b, c such that

|σ(y)− σ(y ′)| ≤ λ |y − y ′| for y , y ′ ∈ Baν+b(0)

|e(p, x ′)− e(p, x)| ≤ ν |x − x ′| for x , x ′ ∈ Ba(x̄) and p ∈ Bc(p̄)

|f (p, x̄)− f (p̄, x̄)| ≤ b for p ∈ Bc(p̄)

Set r = σ,M = (h + F )−1, ȳ = 0 and ϕ = −e. Furthermore observe that

x ∈ (h + F )−1(−e(p, x))⇐⇒ x ∈ S(p).

By the contracting mapping principle we obtain that the solution mapping
S has a single-valued localization around p̄ for x̄
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