Inverse Function Theorem

Modifications of the standard case

Bernadett Stadler

November 17th, 2015

Bernadett Stadler

Inverse Function Theorem

November 17th, 2015

- 34

1 / 30

A (1) × A (2) × A (2) ×

Introduction

Theorem (The classical Inverse Function Theorem)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable in a neighborhood of a point \overline{x} and let $\overline{y} := f(\overline{x})$. If $\nabla f(\overline{x})$ is nonsingular, then f^{-1} has a single-valued localization s around \overline{y} for \overline{x} . Moreover, the function s is continuously differentiable in a neighborhood V of \overline{y} , and its Jacobian satisfies $\nabla s(y) = \nabla f(s(y))^{-1}$ for every $y \in V$.

Modifications of the classical case:

- depart from differentiability
- 2) $f : \mathbb{R}^n \to \mathbb{R}^m$ with $m \le n$

- 3

< 日 > < 同 > < 三 > < 三 >

Outline

- Modification 1: Non-differentiable functions
 Inverse Function Theorem Beyond Differentiation
- Modification 2: Selections of Multi-Valued Inverses
 Inverse Selections for m ≤ n
- Modification 3: Selections from non-differentiable functions
 Inverse Selections from First-Order Approximation

3/30

• • = • • = •

Modification 1: Depart from Differentiation

Approach:

- approximation of non-differentiable f by another function h around \overline{x}
- f differentiable \Rightarrow can take linearization $h(x) = f(\overline{x}) + \nabla f(\overline{x})(x \overline{x})$
- differentiability corresponds to $clm(e; \overline{x}) = 0$ strict differentiability to $lip(e; \overline{x}) = 0$ with $e(x) = f(x) - [f(\overline{x}) - A(x - \overline{x})]$
- key idea: conditions can be applied even if h is not a linearization

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Modification 1: Non-differentiable functions
 Inverse Function Theorem Beyond Differentiation
- Modification 2: Selections of Multi-Valued Inverses
 Inverse Selections for m ≤ n
- Modification 3: Selections from non-differentiable functions
 Inverse Selections from First-Order Approximation

5/30

- 4 回 ト 4 ヨ ト 4 ヨ ト

Preliminary Definitions

Definition (First-Order Approximations and Estimators of Functions) Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ with $h(\overline{x}) = f(\overline{x})$
- $\overline{x} \in \text{int dom } f \text{ and } \overline{x} \in \text{int dom } h$

•
$$e(x) = f(x) - h(x)$$

Then *h* is called

- **(**) a first-oder approximation to f at \overline{x} : $clm(e; \overline{x}) = 0$
- **2** a strict first-order approximation: $lip(e; \overline{x}) = 0$
- **③** an **estimator** of *f* at \overline{x} : $clm(e;\overline{x}) \le \mu < \infty$
- a strict estimator: $lip(e; \overline{x}) \le \mu < \infty$

< 日 > < 同 > < 三 > < 三 >

Properties

- If q is a (strict) first-order approximation to h at \overline{x} and h is a (strict) first-order approximation to f at \overline{x} , then q is a (strict) first-order approximation to f at \overline{x} .
- If f₁ and f₂ have (strict) first-order approximation h₁ and h₂ at x
 x, then h₁ + h₂ is a (strict) first-oder approximation of f₁ + f₂ at x
 x.
- If f has a (strict) first-oder approximation h at \overline{x} , then for any $\lambda \in \mathbb{R}$, λh is a (strict) first-order approximation of λf at \overline{x} .
- If h is a first-order approximation of f at \overline{x} , then $clm(f;\overline{x}) = clm(h;\overline{x})$.
- If h is a strict first-order approximation of f at \overline{x} , then $lip(f;\overline{x}) = lip(h;\overline{x})$.

7 / 30

イロト 不得 トイラト イラト 一日

Corollary (Composition of First-Order Approximations) Assumptions:

- h is a first-order approximaton of f at \overline{x}
- $clm(h; \overline{x}) < \infty$
- v is a first-order approximation of u which is Lipschitz continuous around \overline{y}

Then $v \circ h$ is a first-order approximation of $u \circ f$ at \overline{x} .

Theorem (Inverse Function Theorem Beyond Differentiation) *Assumptions:*

- $f : \mathbb{R}^n \to \mathbb{R}^n$ with $\overline{x} \in int \ dom \ f$
- $h: \mathbb{R}^n \to \mathbb{R}^n$ be a strict estimator of f at \overline{x} with constant μ
- h^{-1} has a Lipschitz continuous single-valued localization σ around \overline{y}
- $lip(\sigma, \overline{y}) \leq \kappa$ for a κ such that $\kappa \mu < 1$

Then f^{-1} has a Lipschitz continuous single-valued localization s around \overline{y} for \overline{x} with $lip(s; \overline{y}) \leq \frac{\kappa}{1-\kappa\mu}$.

4 E N 4 E N

Proof Part 1:

w.l.o.g. assume $\overline{x} = \overline{y} = 0$

Let
$$x^{k+1} := \sigma(y - e(x^k))$$
.
by induction: $x^k \in a\mathbb{B}$, $y - e(x^k) \in a\mathbb{B}$, $|x^k - x^{k-1}| \le (\lambda v)^{k-1} |x^1 - x^0|$

Fix: $\lambda \in (\kappa, \infty)$ and $v \in (\mu, \kappa^{-1})$ such that $\lambda v < 1$ take *a* small enough such that:

- y → h⁻¹(y) ∩ a B y ∈ a B is a localization of σ which is Lipschitz continuous with constant λ
- and $lip(e; \overline{x}) \leq v \ \overline{x} \in a\mathbb{B}$

take α such that: $0 < \alpha < \frac{1}{4}a(1-\lambda\nu)$ and define $b := \frac{\alpha}{4\lambda}$

Proof Part 2: Show the nonempty-valuedness of the localization of f^{-1} .

$$x^k$$
 is a Cauchy Sequence $\Rightarrow x^k \to x$ for $k \to \infty$
 $x = \lim x^{k+1} = \lim \sigma(y - e(x^k)) = \sigma(y - e(x))$
 $\Rightarrow x \in f^{-1}(y)$

from the Lipschitz continuity of σ and e we obtain: $|x| \leq \frac{\lambda b}{1-\lambda v}$

Thus $\forall y \in b \mathbb{B} \exists x \in f^{-1}(y)$ with |x| satisfying the estimation above. \Rightarrow have shown the nonempty-valuedness of the localization s of f^{-1} :

$$s: y \mapsto f^{-1}(y) \cap \frac{\lambda b}{1-\lambda v} \mathbb{B}$$

11 / 30

Proof Part 3: s is single-valued and Lipschitz continuous.

take
$$x, x'$$
 with $x \neq x'$ and a fix $y \in b\mathbb{B}$:
 $0 < |x - x'| = |\sigma(y - e(x')) - \sigma(y - e(x))| \le \lambda v |x - x'| < |x - x'|$
which is a contradiction $\Rightarrow s$ is single valued

take
$$y, y' \in b\mathbb{B}$$
:
 $|s(y') - s(y)| = |\sigma(y' - e(x')) - \sigma(y - e(x))| \le \lambda(v|s(y') - s(y)| + |y' - y|)$
 $\Leftrightarrow |s(y') - s(y)| \le \frac{\lambda}{1 - \lambda v}|y' - y|$

$$|s(y')-s(y)| \leq \frac{\kappa}{1-\kappa\mu}|y'-y|$$

3

12 / 30

< □ > < □ > < □ > < □ > < □ >

Example: Loss of Single-Valued Localization without strict differentiability

Let
$$\alpha \in (0,\infty)$$
 and $f(x) := \alpha x + g(x)$ with

$$g(x) = \begin{cases} x^2 \sin(1/x) & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

Figure: Graphs with $\alpha = 2$ and $\alpha = 0.5$

Bernadett Stadler

Inverse Function Theorem

November 17th, 2015

E 6 4 E 6

Special Case

If $\mu = 0$ (*h* is a strict first-order approximation) one can proof an equivalence emerges between f^{-1} and h^{-1} :

Theorem (Lipschitz Invertibility with First-Order Approximation) *Assumptions:*

- $f: \mathbb{R}^n \to \mathbb{R}^n$
- $h: \mathbb{R}^n \to \mathbb{R}^n$ is a strict first-order approximation of f at \overline{x}
- let $\overline{y} = f(\overline{x}) = h(\overline{x})$

Then f^{-1} has a Lipschitz continuous single-valued localization s around \overline{y} for \overline{x} if and only if h^{-1} has such a localization σ around \overline{y} for \overline{x} . Furthermore $lip(s;\overline{y}) = lip(\sigma;\overline{y})$ and σ is a first-order approximation to s at \overline{y} .

Modification 2

- $f : \mathbb{R}^n \to \mathbb{R}^m$ with m < n
- What can be said about f^{-1} ?

Example: f(x) = Ax + b with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

- m < n: Ax + b = y has no solution or a continuum of solutions \Rightarrow single-valued localizations does not exist
- A has full rank: $f^{-1}(y)$ is nonempty $\forall y$

Question: Do we really always need to assume that m = n to get a single valued localization?

Outline

Introduction

- Modification 1: Non-differentiable functions
 Inverse Function Theorem Beyond Differentiation
- Modification 2: Selections of Multi-Valued Inverses
 Inverse Selections for m ≤ n
- Modification 3: Selections from non-differentiable functions
 Inverse Selections from First-Order Approximation

Preliminary Theorem

Theorem (Brouwer Invariance of Domain Theorem) *Assumptions:*

- $O \subset \mathbb{R}^n$ open
- $f: O \rightarrow \mathbb{R}^m$ continuous, for $m \leq n$
- f^{-1} single-valued on f(0)

Then f(O) is open, f^{-1} continuous on f(O) and m = n.

- can conclude for $f : \mathbb{R}^n \to \mathbb{R}^m$: If $m < n \Rightarrow f^{-1}$ fails to have a single-valued localization
- however one can proof a different statement with the concept of selections

Selections

Definition (Selections)

Assumptions:

- $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and a set $D \subset \text{dom } F$
- $w : \mathbb{R}^n \to \mathbb{R}^m$ with $D \subset \text{dom } w$ and $w(x) \in F(x)$

Then w is a selection of F on D. If in addition $(\overline{x}, \overline{y}) \in \text{gph } F$, D is a neigborhood of \overline{x} and $w(\overline{x}) = \overline{y}$. Then w is a local selection of F around \overline{x} for \overline{y} .

Selections

A selection of f^{-1} might provide a left or a right inverse of f.

- left inverse to f on D: a selection $I : \mathbb{R}^m \to \mathbb{R}^n$ of f^{-1} on f(D) such that I(f(x)) = x
- right inverse to f on D: a selection $r : \mathbb{R}^m \to \mathbb{R}^n$ of f^{-1} on f(D) such that f(r(y)) = y

Example: Linear mapping from \mathbb{R}^m to \mathbb{R}^n represented by a matrix $A \in \mathbb{R}^{m \times n}$ of full rank. If

- $m \le n$: right inverse of A corresponds to $A^T (AA^T)^{-1}$
- $m \ge n$: left inverse of A corresponds to $(A^T A)^{-1} A^T$
- m = n: right and left inverse are equal to A^{-1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (Inverse Selections for $m \leq n$)

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$
- f is k times continuously differentiable in a neighborhood of \overline{x}
- $\nabla f(\overline{x})$ has full rank m

Then there exists a local selection s of f^{-1} around \overline{y} for \overline{x} which is k times continuously differentiable in a neighborhood V of \overline{y} and the Jacobian satisfies:

$$\nabla s(\overline{y}) = A^T (AA^T)^{-1}$$
 with $A := \nabla f(\overline{x})$

Special Case

Theorem (Strictly Differentiable Selections)

- $f: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$
- f is strictly differentiable with $\nabla f(\overline{x})$ is of full rank

Then there exists a local selection s of the inverse f^{-1} around \overline{y} for \overline{x} which is strictly differentiable at \overline{y} and $\nabla s(\overline{y}) = A^T (AA^T)^{-1}$.

Outline

Introduction

- 2 Modification 1: Non-differentiable functions• Inverse Function Theorem Beyond Differentiation
- Modification 2: Selections of Multi-Valued Inverses
 Inverse Selections for m ≤ n

Modification 3: Selections from non-differentiable functionsInverse Selections from First-Order Approximation

Theorem (Inverse Selections from First-Order Approximation) *Assumptions:*

- $f : \mathbb{R}^n \to \mathbb{R}^m$ continuous around \overline{x} with $f(\overline{x}) = \overline{y}$
- $h: \mathbb{R}^n \to \mathbb{R}^m$ first-order approximation of f at \overline{x} which is continuous around \overline{x}
- h^{-1} has a Lipschitz continuous local selection σ

Then f^{-1} has a local selection s around \overline{y} for \overline{x} . Furthermore σ is a first-order approximation of s at \overline{y} .

Preliminary Theorem

Theorem (Brouwer Fixed Point Theorem) *Assumptions:*

- Q compact and convex set in \mathbb{R}^n
- $\phi: \mathbb{R}^n \to \mathbb{R}^n$ continuous on Q
- ϕ maps Q into itself

Then $\exists x \in Q : \phi(x) = x$.

3

Sketch of the Proof Part 1:

Show that f^{-1} has a local selections: w.l.o.g $\overline{x} = \overline{y} = 0$

choose an *a* such that *f* and *h* are continuous on *a*B
define: φ_v : x → σ(y − e(x)) ∀x ∈ aB

since e is continuous, and σ is Lipschitz continuous on $a\mathbb{B}$ $\Rightarrow \phi$ is continuous on $a\mathbb{B}$

with Brouwer's theorem one can conclude that: $\exists x \in a\mathbb{B} : x = \sigma(y - e(x))$

$$h(x) = h(\sigma(y - e(x))) = y - e(x) \Leftrightarrow f(x) = y$$

Sketch of the Proof Part 2:

For each $y \in b\mathbb{B}$ pick one such fixed point x of the function ϕ_y and define s(y) := x. $\Rightarrow s(y) = \sigma(y - e(s(y))) \quad \forall y \in b\mathbb{B}$

$$y = 0$$
 we set $s(0) = 0 \in f^{-1}(0)$

\Rightarrow s is a local selection of f^{-1} around 0 for 0

For an arbitrary neighborhood U of 0 we found b > 0 such that $s(y) \in U \ \forall y \in b\mathbb{B}$. \Rightarrow s is continuous in 0

Special Case

Theorem (Inverse Selections from Nonstrict Differentiability) *Assumptions:*

- $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous in a neighborhood of $\overline{x} \in$ int dom f
- f is differentiable at \overline{x} with $\nabla f(\overline{x})$ nonsingular

Then there exists a local selection of f^{-1} around \overline{x} which is continuous at \overline{y} . Moreover, every local selection s of f^{-1} around \overline{y} which is continuous at \overline{y} has the property that

s is differentiable at \overline{y} with $\nabla s(\overline{y}) = \nabla f(\overline{x})^{-1}$.

Theorem (Inverse Function Theorem Beyond Differentiation) *Assumptions:*

- $f : \mathbb{R}^n \to \mathbb{R}^n$ with $\overline{x} \in int \ dom \ f$
- $h: \mathbb{R}^n \to \mathbb{R}^n$ be a strict estimator of f at \overline{x} with constant μ
- h^{-1} has a Lipschitz continuous single-valued localization σ around \overline{y}
- $lip(\sigma, \overline{y}) \leq \kappa$ for a κ such that $\kappa \mu < 1$

Then f^{-1} has a Lipschitz continuous single-valued localization s around \overline{y} for \overline{x} with $lip(s; \overline{y}) \leq \frac{\kappa}{1-\kappa\mu}$.

Example: Inverse Multi-Valuedness if Differentiability is not Strict

Let
$$\alpha \in (0,\infty)$$
 and $f(x) := \alpha x + g(x)$ with

$$g(x) = egin{cases} x^2 sin(1/x) & ext{for } x
eq 0 \\ 0 & ext{for } x = 0 \end{cases}$$

Figure: Graphs with $\alpha = 2$ and $\alpha = 0.5$

Bernadett Stadler

November 17th, 2015

E 6 4 E 6

Summary

- Depart from differentiation, approximate f
 Inverse function theorem beyond differentiation
 Special Case: Equivalence between f⁻¹ and h⁻¹
- *f* : ℝⁿ → ℝ^m with *m* ≤ *n* Brouwer's invariance of domain theorem
 Selections
 Inverse Selections
- Combine 1 and 2

Inverse Selections from first-order approximations Special Case: Inverse Selections from nonstrict differentiability