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Normal Cone and Variational inequality

Let C ⊂ Rn be convex, x ∈ C .

Definition (Normal Cone)

Nc (x) =
{︀
v | ⟨v , x ′ − x⟩ ≤ 0, ∀ x ′ ∈ C

}︀
(closed and convex)

Definition (Variational inequality)

f (x) + NC (x) ∋ 0
⇔

−f (x) ∈ NC (x)

⇔⟨︀
f (x) , x ′ − x

⟩︀
≥ 0, ∀ x ′ ∈ C
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Monotonicity, strong monotonicity and solution mapping

Let C ⊂ Rn be convex, x ∈ C and let f : Rn → Rn.

Definition (Monotone and strongly monotone functions)

f is said to be monotone on C if⟨︀
f
(︀
x ′)︀− f (x) , x ′ − x

⟩︀
≥ 0, ∀ x , x ′ ∈ C .

f is said to be strongly monotone on C with constant 𝜇 > 0 if⟨︀
f
(︀
x ′)︀− f (x) , x ′ − x

⟩︀
≥ 𝜇|x − x ′|2, ∀ x , x ′ ∈ C .

Definition (Solution mapping)

The mapping to the perturbation scheme f (x) − p (where p is a
parameter vector p ∈ Rn) is

S (p) = {x | p − f (x) ∈ NC} = (f + NC )−1 (p) .
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2F.1: Solution Convexity for Monotone Variational
Inequalities

Theorem
Let f : Rn → Rn be monotone in a nonempty closed convex set C .
The solution mapping S is closed and convex valued. In particular,
the set of solutions (if any) to the variational inequality is closed
and convex.

Proof.

Since S (p) = (fp + NC )−1 (0) for fp (x) = f (x) − p (which is
monotone and continuous like f ), it is sufficient to deal with S (0).
The closedness of S (0) is already shown in Theorem 2A.1 by W.
Stockinger for non-monotone functions (I will state it later). It
remains to show convexity on the black board.



Definitions and preliminaries Variational Inequalities with Monotonicity Consequences for Optimization

2F.1: Solution Convexity for Monotone Variational
Inequalities

Theorem
Let f : Rn → Rn be monotone in a nonempty closed convex set C .
The solution mapping S is closed and convex valued. In particular,
the set of solutions (if any) to the variational inequality is closed
and convex.

Proof.

Since S (p) = (fp + NC )−1 (0) for fp (x) = f (x) − p (which is
monotone and continuous like f ), it is sufficient to deal with S (0).
The closedness of S (0) is already shown in Theorem 2A.1 by W.
Stockinger for non-monotone functions (I will state it later). It
remains to show convexity on the black board.



Definitions and preliminaries Variational Inequalities with Monotonicity Consequences for Optimization

2F.2: Solution Existence for Variational Inequalities without
boundedness

This is an extension of Theorem 2A.1 from W. Stockinger
presentation:

Theorem
Let f : Rn → Rn be continuous in a nonempty closed convex set C .
Suppose there exist a x̂ ∈ C and 𝜌 > 0 such that

there is no x ∈ C with |x − x̂ | ≥ 𝜌 and ⟨f (x) , x − x̂⟩ ≤ 0.

Then the variational inequality has a solution and every solution
satisfies |x − x̂ | < 𝜌.
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Proof of Theorem 2F.2

We need the following ingredients which was shown in W. Stockinger
presentation:

Theorem (Solutions to Variational Inequalities)

Let f : Rn → Rn be continuous in a nonempty closed convex set C .
The set of solutions to the variational equation is always closed. It is
sure to be nonempty when C is bounded.

Remark
If C = C1 ∩ C2 for closed, convex sets C1 and C2 in Rn, then the
formula

Nc (x) = Nc1 (x) + Nc2 (x) = {v1 + v2 | v1 ∈ Nc1 (x) , v2 ∈ Nc2 (x)} ,

holds for every x ∈ C such that there is no v ̸= 0 with v ∈ Nc1 (x) and
−v ∈ Nc2 (x).

Proof on blackboard!
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2F.3: Uniform Local Existence

Corollary
Let f : Rn → Rn be continuous in a nonempty closed convex set C .
Suppose there exist a x̂ ∈ C, 𝜌 > 0 and 𝜂 > 0 such that

there is no x ∈ C with |x − x̂ | ≥ 𝜌 and ⟨f (x) , x − x̂⟩ /|x − x̂ | ≤ 𝜂.

Then the solution mapping S has the property that

∅ ≠ S (v) ⊂ {x ∈ C | |x − x̂ | < 𝜌} when |v | ≤ 𝜂.
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Proof of Corollary 2F.3

Proof.
We show that stronger condition hold for Theorem 2F.2 with
fv (x) = f (x) − v , ∀ |v | < 𝜂. Assume that there exists a x s. t.
|x − x̂ | ≥ 𝜌, then from the assumption in the Corollary
⟨f (x) , x − x̂⟩ > 𝜂|x − x̂ |.

We need to show ⟨f (x) − v , x − x̂⟩ > 0.

⟨f (x) − v , x − x̂⟩ /|x − x̂ | > 𝜂 − ⟨v , x − x̂⟩ /|x − x̂ |
> 𝜂 − |v ||x − x̂ |/|x − x̂ |
= 𝜂 − |v | > 0, ∀ x ∈ C ,

i.e. ⟨f (x) − v , x − x̂⟩ > (𝜂 − |v |) 𝜌 > 0.

The assumption in the Theorem is assured from the stronger
assumption in the Corollary.
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2F.4: Solution Existence for Monotone Variational
Inequalities

Theorem
Let f : Rn → Rn be continuous and monotone in a nonempty closed
convex set C . Let x̂ ∈ C and let W consist of the vectors w with
|w | = 1 such that x̂ + 𝜏w ∈ C, for all 𝜏 ∈ (0,∞), if any.
(a) If lim 𝜏 → ∞⟨f (x̂ + 𝜏w) ,w⟩ > 0 for all w ∈ W, then the

solution mapping S is nonempty-valued on a neighborhood of 0.
(b) If lim 𝜏 → ∞⟨f (x̂ + 𝜏w) ,w⟩ = ∞ for all w ∈ W, then the

solution mapping S is nonempty-valued on all of Rn.

Proof.
The idea of the proof for (a) is to show that limit criteria i (a), which
we call A, ensures the assumption in corollary 2F.3, which we call B .
This is shown by showing that !B →!A.
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2F.6: Variational Inequalities with Strong Monotonicity

Theorem
Let f : Rn → Rn be continuous and strongly monotone with
constant 𝜇 > 0 in a nonempty closed convex set C . Then the
solution mapping S is single-valued on all of Rn and moreover
Lipschitz continuous with constant 𝜇−1.

Proof.
Proof on the blackboard!
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Preliminaries

We look at the variational inequality

∇g (x) + NC (x) ∋ 0,

where g : Rn → R is a continuously differentiable function over a
nonempty, closed, convex set C ⊂ Rn.
Or equivalently

⟨∇g (x) ,w⟩ ≥ 0 ∀w ∈ TC (x) ,

where TC (x) is the tangent cone.

We recall the critical cone from Peter’s presentation:

KC (x ,−∇g (x)) = {w ∈ TC (x) | ⟨∇g (x) ,w⟩ = 0} ,
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2G.1: Second-Order Optimality on a Polyhedral Convex Set

Theorem
Let C be a polyhedral convex set in Rn and let g : Rn → R be twice
continuously differentiable on C. Let x̄ ∈ C and v̄ = −∇g (x̄).
(a) (necessary condition) If g has a local minimum with respect to

C at x̄ , then x̄ satisfies the variational inequality and has⟨︀
w ,∇2g (x̄) w

⟩︀
≥ 0 for all w ∈ KC (x̄ , v̄).

(b) (sufficient condition) If x̄ satisfy the variational inequality and
has

⟨︀
w ,∇2g (x̄) w

⟩︀
> 0 for all nonzero w ∈ KC (x̄ , v̄), then g

has a local minimum relative to C at x̄ , indeed a strong local
minimum i the sense of there being an 𝜖 > 0 such that

g (x) ≥ g (x̄) + 𝜖|x − x̄ |2 ∀ x ∈ C near x̄ .
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Proof of Theorem 2G.1

Proof.
We will prove the necessary condition on the blackboard!

For the sufficient condition (b) the 1D case is inadequate, since we
need a neighborhood of x̄ relative to C .
To show (b) one use the 2nd-order Taylor expansion of g at x̄ .
Furthermore one use the tangent cone property is 2E.3, which
requires C is polyhedral .
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Stationary Points

Definition
An x satisfying the variational inequality, will be called a stationary
point of g with respect to minimizing over C , regardless of whether
or not it furnishes a local or global minimum.
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Stationary point mapping for perturbations

We now look at the parametrized problem on the form

minimize g (p, x) over all x ∈ C ,

where g : Rd × Rn → R is twice continuously differentiable w.r.t.
x , and C is a nonempty, closed, convex subset of Rn.

The variational inequality

∇xg (p, x) + NC (x) ∋ 0,

provides for each p a first-order condition which x must satisfy if it
furnishes a local minimum. It describes the stationary points.

Definition

The stationary point mapping, S : Rd ⇒ Rn, is defined by

S (p) = {x | ∇xg (p, x) + NC (x) ∋ 0}
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Stationary point mapping for tilt perturbations

We also look at the auxiliary problem with parameter v ∈ Rn, in which
g (p̄, ·) is replaced with it’s 2nd-order expansion at x̄ :

minimize ḡ (w) − ⟨v ,w⟩ over all w ∈ W , where

ḡ (w) = g (p̄, x̄) + ⟨∇xg (p̄, x̄) ,w⟩ +
1
2
⟨︀
w ,∇2

xxg (p̄, x̄) w
⟩︀
,

W = {w | x̄ + w ∈ C} = C − x̄ .

The variational inequality

∇xg (p̄, x̄) + ∇2
xxg (p̄, x̄) w − v + NW (w) ∋ 0,

where NW (w) = NC (x̄ + w)

describes the stationary points.

Definition

The stationary point mapping, S̄ : Rn ⇒ Rn, is defined by

S̄ (v) =
{︀
w | ∇xg (p̄, x̄) + ∇2

xxg (p̄, x̄) w + NW (w) ∋ v
}︀
.



Definitions and preliminaries Variational Inequalities with Monotonicity Consequences for Optimization

Stationary point mapping for tilt perturbations

We also look at the auxiliary problem with parameter v ∈ Rn, in which
g (p̄, ·) is replaced with it’s 2nd-order expansion at x̄ :
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2G.2: Parametric Minimization Over a Convex Set

Theorem (part 1)

Using the notation from the two previous slides, with x̄ ∈ S (p̄), that
(a) ∇xg is strictly differentiable at (p̄, x̄).
(b) S̄ has a Lipschitz continuous single-valued localization s̄ around 0 for

0.
Then S has a Lipschitz continuous single-valued localization s around p̄ for
x̄ with

lip (s; p̄) ≤ lip (s̄; 0) |∇2
xpg (p̄, x̄) |

and s has a first-order approximation 𝜂 at p̄ given by

𝜂 (p) = x̄ + s̄
(︀
−∇2

xpg (p̄, x̄) (p − p̄)
)︀
.

(b) is necessary for S to have a Lipschitz continuous single-valued
localization around p̄ for x̄ when the n × d matrix ∇2

xpg (p̄, x̄) has rank n.
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2G.2: Parametric Minimization Over a Convex Set

Theorem (part 2)

If additionally assuming that C is a polyhedral, condition (b) is
equivalent to the condition that, for the critical cone
K = KC (x̄ ,−∇xg (p̄, x̄)), the mapping

v ↦→ S̄0 (v) =
{︀
w | ∇2

xxg (p̄, x̄) w + NK (w) ∋ v
}︀

is everywhere single-valued.
Moreover, a sufficient condition for this can be expressed in terms
of the critical subspaces K+

C (x̄ , v̄) = KC (x̄ , v̄) − KC (x̄ , v̄) and
K−

C (x̄ , v̄) = KC (x̄ , v̄) ∩ [−KC (x̄ , v̄)] for v = −∇xg (p̄, x̄):⟨︀
w ,∇2

xxg (p̄, x̄) w
⟩︀
> 0,

for every nonzero w ∈ K+
C (x̄ , v̄) with ∇2

xxg (p̄, x̄) w ⊥ K−
C (x̄ , v̄).
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Proof of Theorem 2G.2 (part 1 )

We recall Theorem 2E.1 from Peter’s presentation:
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Proof of Theorem 2G.2 (part 2 )

Proof.
We apply this Theorem with f (x , p) = ∇xg (p, x)
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2G.3 Stability of a Local Minimum on Polyhedral Convex Set

Theorem
In the setting of the parametrized minimization problem (not the
auxiliary tilted problem) and its stationary point mapping S we
assume that C is polyhedral and that ∇xg (p, x) is strictly
differentiable with respect to (p, x) at (p̄, x̄), where x̄ ∈ S (p̄).
W.r.t. the critical subspace K+

C (x̄ , v̄) for v̄ = −∇xg (p̄, x̄), assume
that ⟨︀

w ,∇2
xxg (p̄, x̄) w

⟩︀
> 0, for every nonzero w ∈ K+

C (x̄ , v̄) .

Then S has a localization s with the properties from Theorem 2G.2
and also with the property that for every p in some neighborhood of
p̄, the point x = s (p) furnishes a strong local minimum. Moreover
the assumption is necessary for the existence of a localization s with
all there properties, when the n × d matrix ∇2

xpg (p̄, x̄) has rank n.
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2G.4: Tilted Minimization of Strongly Convex Functions

Proposition
Let g : Rn → R be continuously differentiable on an open set O
and let g be strongly convex with constant 𝜇 > 0 on C ⊂ O, where
C is a nonempty, closed, convex set. Then for every v ∈ Rn the
problem

minimize g (x) − ⟨v , x⟩ over x ∈ C

has a unique solution s (v), and the solution mapping s is a
Lipschitz continuous function on Rn with constant 𝜇−1.
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Proof of Proposition 2G.4

We need the Theorem 2A.7 which was shown in W. Stockinger
presentation:

Theorem (Basic Variational Inequality for Minimization)

Let g : Rn → R be differentiable on an open convex set O and let C is a
nonempty, closed, convex subset of O. In minimizing g over C , the
variation inequality

∇g(x) + NC (x) ∋ 0,

is necessary for x to furnish a local minimum. It is both necessary and
sufficient for a global minimum if g is convex.

And we need the lemma:

Lemma (shown in exercise 2A.6 (a))

Let g : Rn → R be continuously differentiable on an open set O and let g
be strongly convex with constant 𝜇 > 0 on C ⊂ O, then the function
f (x) = ∇g(x) strongly monotone on C with constant 𝜇. This is an if and
only if condition.
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Minimization with system of constraints

The set C is now not necessary convex!

We look at the nonlinear programming problem:

minimize g0 (x) over all x satisfying gi (x)

{︃
≤ 0 for i ∈ [1, s] ,

= 0 for i ∈ [s + 1,m] .

We assume that the functions g0, g1, . . . , gm are twice continuously
differentiable on Rn.

From Theorem 2A.9 we know that there
exists a multiplier vector y = (y1, . . . , ym) relative to x , fulfilling
the Karush-Kuhn-Tucker (KKT) conditions:

y ∈ Rs
+ × Rm−s , gi (x)

{︃
≤ 0 for i ∈ [1, s] , with yi = 0,
= 0 for all other i ∈ [1,m] ,

∇g0 (x) + y1∇g1 (x) + . . . + ym∇gm (x) = 0.
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Lagrangian function

We want to take a second-order approach to local sufficiency, hence
we rewrite the problem in terms of the Lagrangian.

From Theorem 2A.10 we know that the KKT formulation on the
previous slide can identified in terms of the Lagrangian function

L (x , y) = g0 (x) + y1g1 (x) + . . . + ymgm (x)

with the V.I. for a continuously differentiable function
f : Rn × Rm → Rn × Rm and a polyhedral convex cone
E ⊂ Rn × Rm,

f (x , y) + NE (x , y) ∋ (0, 0) ,

where

{︃
f (x , y) = (∇xL (x , y) −∇yL (x , y))T ,

E = Rn ×
[︀
Rs
+ × Rm−s]︀ .
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2G.6: Second-Order Optimality in Nonlinear Programming

Theorem
Let x̄ be a point satisfying the constrains, gi (x̄). Let I (x̄) be the set of indices i of
the active constraints at x̄ , and assume that the gradients ∇gi (x̄) for i ∈ I (x̄) are
linear independent. Let K consists of the vector w ∈ Rn satisfying

⟨∇gi (x̄) ,w⟩

{︃
≤ 0 for i ∈ I (x̄) with i ≤ s,
= 0 for all other i ∈ I (x̄) and also for i = 0.

(a) (Necessary Condition) If x̄ furnishes a local minimum in the minimization
problem, then a multiplier vector ȳ exist such that (x̄ , ȳ) satisfies the V.I and
also has ⟨︀

w ,∇2
xxL (x̄ , ȳ) w

⟩︀
≥ 0 ∀w ∈ K .

(b) (Sufficient Condition) If a multiplier vector ȳ exists such that (x̄ , ȳ) satisfies the
KKT conditions, or equivalently the V.I. and if the inequality in part (a) hold
strictly when w ̸= 0, then x̄ furnishes a local minimum in the minimization
problem. It is a strong local minimum in the sense that ∃ 𝜖 > 0 such that

g0 (x) ≥ g0 (x̄) + 𝜖|x − x̄ |2
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Summary of this talk

Definitions and Preliminaries

Variational Inequalities with Monotonicity
Convexity of solution
Existence without monotonicity and boundedness (improving a 2A.1)
Existence for monotone V.I.
V.I. with strong monotonicity (property of the solutions)

Consequences for Optimization
2nd-Order optimality on polyhedral convex set
Parametrized minimization problem
Tilted minimization problem
Minimization problem with system of constraints (not convex)
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Thank you for attention!
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