The Implicit Function and Inverse Function Theorems

Selina Klien

12. November 2015

Selina Klien

Implicit Functions and Solution Mappings

12. November 2015

1 / 45

Outline

- Important Definitions
- 2 Implicit Function Theorem and Inverse Function Theorem
 - Classical Implicit Function Theorem
 - Classical Inverse Function Theorem
 - Symmetric Function Theorems
- 3 Calmness
 - Definition
- 4 Lipschitz Continuity
 - Definition
 - Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

< 回 > < 三 > < 三

Ideas Of Solving Equations

There are different ways to solve equations. Two ideas:

• Let $f: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be a function. We want to solve the equation

$$f(p,x)=0.$$

Idea: x is a function of p: x = s(p), such that

$$f(p,s(p))=0.$$

The function x = s(p) is defined *implicitly* by the equation.

• Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a function. The idea of solving the equation

$$f(x) = y$$

for x as a function of y concerns the inversion of f.

医静脉 医黄脉 医黄麻 医黄

Important Theorems

When does such a function s(p) or inversion of f exist?

There are two well-known theorems, which guarantee us a at least **local** solution under special conditions:

- Implicit Function Theorem
- Inverse Function Theorem

4 AR N 4 E N 4 E N

Outline

Important Definitions

2 Implicit Function Theorem and Inverse Function Theorem

- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
- 3 Calmness
 - Definition
- 4 Lipschitz Continuity
 - Definition
 - Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

- 4 回 ト 4 ヨ ト 4 ヨ ト

Solution Mapping

'Problem': fix vector p and we are looking for a 'solution' x such that the equation f(p, x) = 0 holds.

 \Rightarrow solution mapping S as set-valued mapping signaled by the notation:

$$egin{aligned} S: \mathbb{R}^d & \rightrightarrows \mathbb{R}^n \ p &\mapsto \{x \in \mathbb{R} | f(p,x) = 0\} \end{aligned}$$

The graph of S is the set

$$\mathsf{gph}S = \{(p, x) \in \mathbb{R}^d \times \mathbb{R}^n | x \in S(p)\}$$

What are the properties of set-valued mappings?

ヘロト 人間ト ヘヨト ヘヨト

Properties of set-valued mappings

General set-valued mapping

$$F:\mathbb{R}^n \rightrightarrows \mathbb{R}^m$$

with graph of F

$$gphF = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m | y \in F(x)\}$$

F is . . .

... empty-valued at $x :\Leftrightarrow F(x) = \emptyset$

 \dots single-valued at $x :\Leftrightarrow F(x) = y$ with $y \in \mathbb{R}^m$

... multivalued at $x :\Leftrightarrow F(x)$ assigns more than one element, $|F(x)| \ge 2$.

イロト イポト イヨト イヨト 二日

Domain and Range of F

Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ be a set-valued mapping. The domain of F is the set

$$\mathsf{dom} F = \{x | F(x) \neq \emptyset\}$$

while the range of F is

$$\mathsf{rge}F = \{y | y \in F(x) \text{ for some } x\}$$

A *function* from \mathbb{R}^n to \mathbb{R}^m is a set-valued mapping $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ which ist single-valued at every point of dom F.

We can emphasize this by writing $F : \mathbb{R}^n \to \mathbb{R}^m$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Inverse of set-valued mappings

One advantage of the framework of set-valued mappings:

Every set-valued mapping $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ has an inverse, namely the set valued mapping $F^{-1} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ defined by

$$F^{-1}(y) = \{x | y \in F(x)\}$$

In this manner a function f always has an inverse f^{-1} as a set-valued mapping.

When is the set-valued mapping f^{-1} a function?

Graphical Localization

For $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and a pair $(\bar{x}, \bar{y}) \in \text{gph } F$, a graphical localization of F at \bar{x} for \bar{y} is a set-valued mapping \bar{F} , such that

 $gph\bar{F} = (U \times V) \cap ghpF$ for some neighborhoods U of \bar{x} and V of \bar{y}

so that

$$ar{F}: x \mapsto egin{cases} F(x) \cap V & x \in U \ \emptyset & & \ ar{F}^{-1}: x \mapsto egin{cases} F^{-1}(y) \cap U & y \in V \ \emptyset & & \ \end{bmatrix}$$

Single-Valued Localization

Definition

By a single-valued localization of F at \bar{x} will be meant a graphical localization that is a function, its domain not necessarily being a neighbourhood of \bar{x} .

The case where the domain is indeed a neighbourhood of \bar{x} will be indicated by referring to a single-valued localization of F around \bar{x} for \bar{y} , instead of just \bar{x} for \bar{y} .

11 / 45

The Solution Mapping

The solution mapping of f(p, x) = 0 is a set-valued mapping, which is defined by

 $S : \mathbb{R}^d \rightrightarrows \mathbb{R}^n$ $S(p) = \{x | f(p, x) = 0\}$

We can look at pairs (\bar{p}, \bar{x}) in gphS and ask whether S has a single-valued localization s around \bar{p} for \bar{x} .

Such a localization is exactly what constitutes an implicit function coming out of the equation.

ヘロト 人間ト イヨト イヨト 二日

Outline

• Important Definitions

Implicit Function Theorem and Inverse Function Theorem

- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
- 3 Calmness
 - Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Classical Implicit Function Theorem

Theorem

Let $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable in a neighbourhood of a point (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x}) = 0$, and let the partial Jacobian of f with respect to x at (\bar{p}, \bar{x}) , namely $\nabla_x f(\bar{p}, \bar{x})$, be nonsingular. Then the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p} with Jacobian satisfying

$$abla s(p) = -
abla_x f(p, s(p))^{-1}
abla_p f(p, s(p)) \qquad \forall p \in Q$$

Contraction Mapping Principle

Theorem (Contraction Mapping Principle)

Let X be a complete metric space with metric d. Consider a point $\bar{x} \in X$ and function $\phi : X \to X$ for which there exist scalars a > 0 and $\lambda \in [0, 1)$ such that

$$egin{aligned} 1.d(\phi(ar{x}),ar{x}) &\leq a(1-\lambda) \ 2.d(\phi(x'),\phi(x)) &\leq \lambda \, d(x',x) \ &orall x,x' \in \mathbb{B}_a(ar{x}) \end{aligned}$$

Then there is a unique $x \in \mathbb{B}_a(\bar{x})$ satisfying $x = \phi(x)$.

Proof: Analysis

Another equivalent version of contraction mapping principle:

Selina Klien

Implicit Functions and Solution Mappings

Parametric Contraction Mapping Principle

Theorem

Let X be a complete metric space and , P be a metric space with metrics d_x , d_p and let $\phi : P \times X \to X$. Suppose that there exist a $\lambda \in [0, 1)$ and $\mu \ge 0$ such that

$$\begin{aligned} &d_x(\phi(p,x'),\phi(p,x)) \leq \lambda d_x(x',x) & \forall x,x' \in X \forall p \in P \\ &d_x(\phi(p',x),\phi(p,x)) \leq \mu d_p(p',p) & \forall p,p' \in P \forall x \in X \end{aligned}$$

then the mapping

$$\Psi: p \mapsto \{x \in X | x = \phi(p, x)\}$$
 for $p \in P$

is single-valued on P, which is moreover Lipschitz continuous on P with Lipschitz constant $\mu/(1-\lambda)$.

< 4[™] >

Sketch Of Proof

Step 1: Existence of a single-valued localization s(p) = xTo show: The function

$$\psi: \mathbb{R}^q \times \mathbb{R}^n \to \mathbb{R}^n$$
$$(p, x) \mapsto x - D^{-1}f(p, x)$$

where $D := \nabla_x f(\bar{p}, \bar{x})$, satisfies the condition of the Parametric Contraction Mapping Principle - Theorem.

 \Rightarrow single-valued localization in a neighbourhood of (\bar{p}, \bar{x}) .

$$s: p \mapsto \{x | x = \psi(p, x) = x - D^{-1}f(p, x)\}$$

17 / 45

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Step 2: Derivative of *s* Use Chainrule. Let $p \in U(\bar{p})$

$$egin{aligned} 0 &= f(p,s(p)) \ 0 &=
abla_p f(p,s(p)) +
abla_x f(p,s(p))
abla_p s(p) \ &\Rightarrow
abla s(p) &= -
abla_x f(p,s(p))^{-1}
abla_p f(p,s(p)) \end{aligned}$$

Step 3: Continuous differentiability of s

f is continuously differentiable and $\nabla_x f(\bar{p}, \bar{x})$ is nonsingular.

18 / 45

Outline

• Important Definitions

Implicit Function Theorem and Inverse Function Theorem

- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
- 3 Calmness
 - Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Classical Inverse Function Theorem

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable in a neighbourhood of a point \bar{x} and let $\bar{y} = f(\bar{x})$. If $\nabla f(\bar{x})$ is nonsingular, then f^{-1} has a single-valued localization s around \bar{y} for \bar{x} . Moreover, the function s is continuously differentiable in a neighbourhood V of \bar{y} , and its Jacobian satisfies

$$abla s(y) =
abla f(s(y))^{-1} \qquad \forall y \in V$$

20 / 45

Sketch Of Proof

The Inverse Function Theorem is a special case of the Implicit Function Theorem:

Sketch of Proof: Let $\overline{f} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be defined by $\overline{f}(x, y) = f(x) - y$. f is continuously differentiable and hence \overline{f} is continuously differentiable and $\nabla_x \overline{f}(\overline{x}, \overline{y}) = \nabla f(\overline{x})$ is nonsingular.

 \Rightarrow a single valued function exists:

$$s: y \mapsto \{x | f(x) - y = 0\} = \{x | f(x) = y\}$$

And

$$abla s(y) = -
abla_x \overline{f}(x, y)^{-1}
abla_y \overline{f}(x, y) =
abla f(x)^{-1}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Are there any conditions such that the following two statements are equivalent?

- the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p}
- $\nabla_x f(\bar{p}, \bar{x})$ is nonsingular.

Answer: Yes! The condition: $\nabla_p f(\bar{p}, \bar{x})$ has full rank *n*.

22 / 45

Outline

• Important Definitions

Implicit Function Theorem and Inverse Function Theorem

- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
- 3 Calmness
 - Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Symmetric Implicit Function Theorem

Theorem (Symmetric Implicit Function Theorem)

Let $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable in a neighbourhood of (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x}) = 0$, and let $\nabla_p f(\bar{p}, \bar{x})$ be of full rank n. Then the following are equivalent

- the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p}
- $\nabla_x f(\bar{p}, \bar{x})$ is nonsingular.

Symmetric Inverse Function Theorem

Theorem (Symmetric Inverse Function Theorem)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable around \bar{x} . Then the following are equivalent

- $\nabla f(\bar{x})$ is nonsingular.
- f^{-1} has a single-valued localization around $\bar{y} := f(\bar{x})$ for \bar{x} which is continuously differentiable around \bar{y} .

 $\label{eq:proof: Classical Inverse Function Theorem + Symmetric Implicit Function Theorem$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Outline

- Introduction
 - Important Definitions
- 2 Implicit Function Theorem and Inverse Function Theorem
 - Classical Implicit Function Theorem
 - Classical Inverse Function Theorem
 - Symmetric Function Theorems
- 3 Calmness
 - Definition

Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

(4) (日本)

Calmness

Definition (Calmness)

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be calm at \overline{x} relative to a set D in \mathbb{R}^n if $\overline{x} \in D \cap \text{dom} f$ and there exists a constant $\kappa \ge 0$ such that

$$|f(x) - f(\bar{x})| \le \kappa |x - \bar{x}| \qquad \forall x \in D \cap \operatorname{dom} f$$

Definition (Lipschitz Continuous Functions)

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be Lipschitz continuous relative to a set D, or on a set D, if $D \subset \text{dom} f$ and there exists a constant $\kappa \ge 0$ such that

$$|f(x) - f(x')| \le \kappa |x - x'| \qquad \forall x, x' \in D$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Calmness Modulus

Definition (Calmness Modulus)

The calmness modulus of f at \bar{x} , denoted $clm(f; \bar{x})$ is defined by

$$\mathsf{clm}(f;\bar{x}) := \limsup_{x \in \mathsf{dom}f, x \to \bar{x}, x \neq \bar{x}} \frac{|f(x) - f(\bar{x})|}{|x - \bar{x}|}$$

It is obvious that

f is calm at
$$\bar{x} \iff \operatorname{clm}(f; \bar{x}) < \infty$$

28 / 45

▲ 同 ▶ → 三 ▶

Lipschitz vs Calmness

$$1.f(x) = (-1)^{n+1}9x + (-1)^n \frac{2^{2n+1}}{5^{n-2}}, |x| \in \left[\frac{4^n}{5^{n-1}}, \frac{4^{n-1}}{5^{n-2}}\right]$$

2. $f(x) = (-1)^{n+1}(6+n)x + (-1)^n 210 \frac{(5+n)!}{(6+n)!},$
 $|x| \in \left[210 \frac{(5+n)!}{(7+n)!}, 210 \frac{(4+n)!}{(6+n)!}\right]$

æ

• • • • • • • • • •

Properties of Calmness Modulus

- $\mathsf{clm}(f; \bar{x}) \ge 0$ for every $\bar{x} \in \mathsf{dom} f$
- $\mathsf{clm}(\lambda f; \bar{x}) = |\lambda|\mathsf{clm}(f; \bar{x})$ for any $\lambda \in \mathbb{R}$ and $\bar{x} \in \mathsf{dom} f$
- $\mathsf{clm}(f+g;\bar{x}) \leq \mathsf{clm}(f;\bar{x}) + \mathsf{clm}(g;\bar{x})$ any $\forall \bar{x} \in \mathsf{dom} f \cap \mathsf{dom} g$
- clm(f ∘ g; x̄) ≤ clm(f; x̄) · clm(g; x̄) whenever x̄ ∈ domg and g(x̄) ∈ dom f
- clm(f + g; x̄) = 0 ⇒ clm(f; x̄) = clm(g; x̄) whenever x̄ ∈ domg∩ domf (converse is false!!!)

- 本間下 本臣下 本臣下 三臣

Definition

Partial Calmness

Definition

A function $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ is said to be calm w.r.t. x at $(\bar{p}, \bar{x}) \in$ domf when the function ϕ with values $\phi(\bar{x}) = f(\bar{p}, x)$ is calm at \bar{x} . Such calmness is said to be uniform in p at (\bar{p}, \bar{x}) when there exists a constant $\kappa \ge 0$ and neighbourhoods Q of p and U of \bar{x} such that actually

$$|f(p,x) - f(p,ar{x})| \leq \kappa |x - ar{x}| \qquad \quad orall (p,x) \in (Q imes U) \cap \operatorname{\mathsf{dom}} f$$

The partial calmness modulus of f w.r.t. x at (\bar{p}, \bar{x}) is denoted as $\operatorname{clm}_x(f; (\bar{p}, \bar{x}))$. While the uniform partial calmness modulus is

$$\widehat{\operatorname{clm}}_x(f;(\bar{p},\bar{x})) := \limsup_{x \to \bar{x}, p \to \bar{p}, (p,x) \in \operatorname{dom} f, x \neq \bar{x}} \frac{|f(p,x) - f(p,\bar{x})|}{|x - \bar{x}|}.$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

The Theorems shows that the invertibility of the derivative is a necessary condition to obtain a calm single valued localization of the inverse.

Theorem (Jacobian Nonsingularity from Inverse Calmness)

Given $f : \mathbb{R}^n \to \mathbb{R}^n$ and $\bar{x} \in int \text{ dom} f$. Let f be differentiable at \bar{x} and let $\bar{y} = f(\bar{x})$.

If f^{-1} has a single-valued localization around \bar{y} for \bar{x} , which is calm at \bar{y} then $\nabla f(\bar{x})$ is nonsingular.

32 / 45

Definition

Outline

- - Important Definitions
- - Classical Implicit Function Theorem
 - Classical Inverse Function Theorem
 - Symmetric Function Theorems
- - Definition

Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict

・ 何 ト ・ ヨ ト ・ ヨ ト

Lipschitz Continuity

Definition (Lipschitz Continuous Functions)

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be Lipschitz continuous relative to a set D, or on a set D, if $D \subset \text{dom} f$ and there exists a constant $\kappa \ge 0$ such that

$$|f(x) - f(x')| \le \kappa |x - x'| \qquad \forall x, x' \in D$$

Definition (Lipschitz Modulus)

The Lipschitz modulus of f at \bar{x} , denoted $clm(f; \bar{x})$ is defined by

$$\operatorname{lip}(f;\bar{x}) := \limsup_{x', x \to \bar{x}, x \neq x'} \frac{|f(x) - f(x')|}{|x - x'|}$$

It is obvious that

f is Lipschitz continuous around $\bar{x} \iff lip(f; \bar{x}) < \infty$

ロト (周) (ヨ) (ヨ)

Definition

Lipschitz Continuity from Differentiability

Theorem

If f is continuously differentiable on an open set O and C is a compact convex subset of O, then f is Lipschitz continuous relative to C with constant

$$\kappa = \max_{x \in C} |\nabla f(x)|.$$

Proof: Analysis. Easy Examples:

- The function $x \mapsto x^2$ is differentiable on \mathbb{R} , but not Lipschitz continuous on \mathbb{R} .
- The function x → |x| is Lipschitz continuous with lip(|x|, x) = 1 on ℝ but it is not differentiable at 0.

- 4 回 ト - 4 回 ト

Strict Differentiability

Definition (Strict Differentiability)

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be strictly differentiable at point \bar{x} if there is a linear mapping $A : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$lip(e; \bar{x}) = 0 \text{ for } e(x) = f(x) - [f(\bar{x}) + A(x - \bar{x})]$$
$$lip(e; \bar{x}) = \lim_{x', x \to \bar{x}, x \neq x'} \frac{|f(x) - [f(x') + A(x - x')]|}{|x - x'|}$$

Definition

A function f is differentiable if there exists a linear mapping $A : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\operatorname{clm}(e,\bar{x}) = 0, \qquad \operatorname{clm}(e,\bar{x}) = \limsup_{x \in \operatorname{dom} f, x \to \bar{x}, x \neq \bar{x}} \frac{|f(x) - [f(\bar{x}) + A(x - \bar{x})]|}{|x - \bar{x}|}$$

If f is differentiable at \bar{x} then $A = \nabla f(\bar{x})$.

Selina Klien

Implicit Functions and Solution Mappings

12. November 2015 36 / 45

Definition

Strict Differentiability vs Differentiability

1.
$$f(0) = 0$$
, $f\left(\frac{1}{n}\right) = \frac{1}{n^2}$ and it is linear in the Intervals $\left[\frac{1}{n}, \frac{1}{n+1}\right]$
2. $f(0) = 0$, $f(x) = \frac{x}{2} + x^2 \sin\left(\frac{1}{x}\right)$

э

37 / 45

Definition

Properties of Strict Differentiability

- f is continuously differentiable in a neighbourhood of $\bar{x} \Rightarrow f$ is strictly differentiable at \bar{x}
- f is strictly differentiable on an open set $O \iff f$ is continuously differentiable on O
- f is differentiable at every point in a neighbourhood of \bar{x} . Then

f is strictly differentiable at $\bar{x} \iff \nabla f$ ist continuous at \bar{x}

イヨト イモト イモト

Outline

- Introduction
 - Important Definitions
- 2 Implicit Function Theorem and Inverse Function Theorem
 - Classical Implicit Function Theorem
 - Classical Inverse Function Theorem
 - Symmetric Function Theorems
- 3 Calmness
 - Definition

Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

39 / 45

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

fferentiability

Symmetric Inverse Function Theorem Under Strict Differentiability

Theorem (Symmetric Inverse Function Theorem Under Strict Differentiability)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be strictly differentiable at \bar{x} . Then the following are equivalent

- $\nabla f(\bar{x})$ is nonsingular
- f^{-1} has a single-valued localization s around $\bar{y} := f(\bar{x})$ for \bar{x} which is strictly differentiable at \bar{y} . In that case, moreover

$$abla s(ar y) =
abla f(ar x)^{-1}$$

Strict Partial Differentiability

Definition (Strict Partial Differentiability)

A function $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^m$ is said to be strictly differentiable with respect to x at (\bar{p}, \bar{x}) if the function $x \mapsto f(\bar{p}, x)$ is strictly differentiable at \bar{x} . It is said to be strictly differentiable with respect to x uniformly in pat (\bar{p}, \bar{x}) if for every $\epsilon > 0$ there are neighbourhoods Q of \bar{p} and U of \bar{x} such that

$$|f(p,x)-[f(p,x')+D_xf(ar p,ar x)(x-x')]|\leq \epsilon|x-x'|\qquad orall x,x'\in Uorall p\in Q.$$

41 / 45

ferentiability

Implicit Functions Under Strict Partial Differentiability

Theorem (Implicit Functions Under Strict Partial Differentiability)

Let $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be strictly differentiable at a point (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x}) = 0$ and let the partial Jacobian $\nabla_x f(\bar{p}, \bar{x})$ be nonsingular. Then the solution mapping

$$S: p \mapsto \{x \in \mathbb{R}^n | f(p, x) = 0\}$$

has a single-valued localization s around \bar{p} for \bar{x} which is strictly differentiable at \bar{p} with its Jacobian expressed by

$$abla s(ar p) = -
abla_x f(ar p, ar x)^{-1}
abla_p f(ar p, ar x).$$

Proof: Similar to the proof of the Classic Implicit Function Theorem.

・ 何 ト ・ ヨ ト ・ ヨ ト

Summary - Inverse Function Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable around / strictly differentiable at \bar{x} and let $\bar{y} = f(\bar{x})$. Then the following are equivalent

- ∇f is nonsingular
- f^{-1} has a single-valued localization s around $\bar{y} := f(\bar{x})$ for \bar{x} which is continuously differentiable around / strictly differentiable at \bar{y} . In that case, moreover

$$abla s(y) =
abla f(s(y))^{-1} \qquad y \in U_{\epsilon}(\bar{y})
onumber \
abla s(\bar{y}) =
abla f(\bar{x})^{-1}$$

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable at $\bar{x} \in \text{int dom} f$ and let $\bar{y} = f(\bar{x})$. If f^{-1} has a single-valued localization around \bar{y} for \bar{x} , which is calm at \bar{y} then $\nabla f(\bar{x})$ is nonsingular.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Summary - Implicit Functions

Let $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable around / strictly differentiable at (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x}) = 0$ and let the partial Jacobian $\nabla_x f(\bar{p}, \bar{x})$ be nonsingular.

Then the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable around / strictly differentiable at \bar{p} with its Jacobian expressed by

$$abla s(p) = -\nabla_x f(p, s(p))^{-1} \nabla_p f(p, s(p)) \qquad p \in U_\epsilon(\bar{p})$$

 $abla s(\bar{p}) = -\nabla_x f(\bar{p}, \bar{x})^{-1} \nabla_p f(\bar{p}, \bar{x}).$

Thank you for your attention

э