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Introduction

Ideas Of Solving Equations
There are different ways to solve equations. Two ideas:

Let f : Rd ×Rn → Rn be a function. We want to solve the equation

f (p, x) = 0.

Idea: x is a function of p : x = s(p), such that

f (p, s(p)) = 0.

The function x = s(p) is defined implicitly by the equation.

Let f : Rn → Rn be a function. The idea of solving the equation

f (x) = y

for x as a function of y concerns the inversion of f .
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Introduction

Important Theorems

When does such a function s(p) or inversion of f exist?

There are two well-known theorems, which guarantee us a at least local
solution under special conditions:

Implicit Function Theorem
Inverse Function Theorem
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Introduction Important Definitions

Solution Mapping

’Problem’: fix vector p and we are looking for a ’solution’ x such that the
equation f (p, x) = 0 holds.
⇒ solution mapping S as set-valued mapping signaled by the notation:

S : Rd ⇒ Rn

p 7→ {x ∈ R|f (p, x) = 0}

The graph of S is the set

gphS = {(p, x) ∈ Rd ×Rn|x ∈ S(p)}

What are the properties of set-valued mappings?
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Introduction Important Definitions

Properties of set-valued mappings

General set-valued mapping

F : Rn ⇒ Rm

with graph of F

gphF = {(x , y) ∈ Rn ×Rm|y ∈ F (x)}

F is . . .

. . . empty-valued at x :⇔ F (x) = ∅

. . . single-valued at x :⇔ F (x) = y with y ∈ Rm

. . . multivalued at x :⇔ F (x) assigns more than one element, |F (x)| ≥ 2.
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Introduction Important Definitions

Domain and Range of F

Let F : Rn ⇒ Rm be a set-valued mapping. The domain of F is the set

domF = {x |F (x) 6= ∅}

while the range of F is

rgeF = {y |y ∈ F (x) for some x}

A function from Rn to Rm is a set-valued mapping F : Rn ⇒ Rm which
ist single-valued at every point of domF .

We can emphasize this by writing F : Rn → Rm.

Selina Klien Implicit Functions and Solution Mappings 12. November 2015 8 / 45



Introduction Important Definitions

Inverse of set-valued mappings

One advantage of the framework of set-valued mappings:

Every set-valued mapping F : Rn ⇒ Rm has an inverse, namely the set
valued mapping F−1 : Rm ⇒ Rn defined by

F−1(y) = {x |y ∈ F (x)}

In this manner a function f always has an inverse f −1 as a set-valued
mapping.

When is the set-valued mapping f −1 a function?
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Introduction Important Definitions

Graphical Localization

For F : Rn ⇒ Rm and a pair (x̄ , ȳ) ∈ gph F , a graphical localization of F
at x̄ for ȳ is a set-valued mapping F̄ , such that

gphF̄ = (U × V ) ∩ ghpF for some neighborhoods U of x̄ and V of ȳ

so that

F̄ : x 7→
{
F (x) ∩ V x ∈ U
∅

F̄−1 : x 7→
{
F−1(y) ∩ U y ∈ V
∅
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Introduction Important Definitions

Single-Valued Localization

Definition
By a single-valued localization of F at x̄ will be meant a graphical
localization that is a function, its domain not necessarily being a
neighbourhood of x̄ .
The case where the domain is indeed a neighbourhood of x̄ will be
indicated by referring to a single-valued localization of F around x̄ for ȳ ,
instead of just x̄ for ȳ .
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Introduction Important Definitions

The Solution Mapping

The solution mapping of f (p, x) = 0 is a set-valued mapping, which is
defined by

S : Rd ⇒ Rn

S(p) = {x |f (p, x) = 0}

We can look at pairs (p̄, x̄) in gphS and ask whether S has a single-valued
localization s around p̄ for x̄ .
Such a localization is exactly what constitutes an implicit function coming
out of the equation.
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Implicit Function Theorem and Inverse Function Theorem Classical Implicit Function Theorem

Classical Implicit Function Theorem

Theorem
Let f : Rd ×Rn → Rn be continuously differentiable in a neighbourhood
of a point (p̄, x̄) and such that f (p̄, x̄) = 0, and let the partial Jacobian of
f with respect to x at (p̄, x̄), namely ∇x f (p̄, x̄), be nonsingular.
Then the solution mapping S has a single-valued localization s around p̄
for x̄ which is continuously differentiable in a neighbourhood Q of p̄ with
Jacobian satisfying

∇s(p) = −∇x f (p, s(p))−1∇pf (p, s(p)) ∀p ∈ Q
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Implicit Function Theorem and Inverse Function Theorem Classical Implicit Function Theorem

Contraction Mapping Principle

Theorem ( Contraction Mapping Principle)
Let X be a complete metric space with metric d. Consider a point x̄ ∈ X
and function φ : X → X for which there exist scalars a > 0 and λ ∈ [0, 1)
such that

1.d(φ(x̄), x̄) ≤ a(1− λ)
2.d(φ(x ′), φ(x)) ≤ λ d(x ′, x) ∀x , x ′ ∈ Ba(x̄)

Then there is a unique x ∈ Ba(x̄) satisfying x = φ(x).

Proof: Analysis

Another equivalent version of contraction mapping principle:
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Implicit Function Theorem and Inverse Function Theorem Classical Implicit Function Theorem

Parametric Contraction Mapping Principle

Theorem
Let X be a complete metric space and , P be a metric space with metrics
dx ,dp and let φ : P × X → X. Suppose that there exist a λ ∈ [0, 1) and
µ ≥ 0 such that

dx (φ(p, x ′), φ(p, x)) ≤ λdx (x ′, x) ∀x , x ′ ∈ X∀p ∈ P
dx (φ(p′, x), φ(p, x)) ≤ µdp(p′, p) ∀p, p′ ∈ P∀x ∈ X

then the mapping

Ψ : p 7→ {x ∈ X |x = φ(p, x)} for p ∈ P

is single-valued on P, which is moreover Lipschitz continuous on P with
Lipschitz constant µ/(1− λ).
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Implicit Function Theorem and Inverse Function Theorem Classical Implicit Function Theorem

Sketch Of Proof

Step 1: Existence of a single-valued localization s(p) = x
To show: The function

ψ : Rq ×Rn → Rn

(p, x) 7→ x − D−1f (p, x)

where D := ∇x f (p̄, x̄), satisfies the condition of the Parametric
Contraction Mapping Principle - Theorem.

⇒ single-valued localization in a neighbourhood of (p̄, x̄).

s : p 7→ {x |x = ψ(p, x) = x − D−1f (p, x)}
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Implicit Function Theorem and Inverse Function Theorem Classical Implicit Function Theorem

Step 2: Derivative of s
Use Chainrule. Let p ∈ U(p̄)

0 = f (p, s(p))
0 = ∇pf (p, s(p)) +∇x f (p, s(p))∇ps(p)

⇔ ∇s(p) = −∇x f (p, s(p))−1∇pf (p, s(p))

Step 3: Continuous differentiability of s

f is continuously differentiable and ∇x f (p̄, x̄) is nonsingular.
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Implicit Function Theorem and Inverse Function Theorem Classical Inverse Function Theorem

Classical Inverse Function Theorem

Theorem
Let f : Rn → Rn be continuously differentiable in a neighbourhood of a
point x̄ and let ȳ = f (x̄).
If ∇f (x̄) is nonsingular, then f −1 has a single-valued localization s around
ȳ for x̄ . Moreover, the function s is continuously differentiable in a
neighbourhood V of ȳ , and its Jacobian satisfies

∇s(y) = ∇f (s(y))−1 ∀y ∈ V
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Implicit Function Theorem and Inverse Function Theorem Classical Inverse Function Theorem

Sketch Of Proof

The Inverse Function Theorem is a special case of the Implicit Function
Theorem:

Sketch of Proof: Let f̄ : Rn ×Rn → Rn be defined by f̄ (x , y) = f (x)− y .
f is continuously differentiable and hence f̄ is continuously differentiable
and ∇x f̄ (x̄ , ȳ) = ∇f (x̄) is nonsingular.

⇒ a single valued function exists:

s : y 7→ {x |f (x)− y = 0} = {x |f (x) = y}

And
∇s(y) = −∇x f̄ (x , y)−1∇y f̄ (x , y) = ∇f (x)−1
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Implicit Function Theorem and Inverse Function Theorem Classical Inverse Function Theorem

Are there any conditions such that the following two statements are
equivalent?

the solution mapping S has a single-valued localization s around p̄ for
x̄ which is continuously differentiable in a neighbourhood Q of p̄

∇x f (p̄, x̄) is nonsingular.

Answer: Yes! The condition: ∇pf (p̄, x̄) has full rank n.
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Implicit Function Theorem and Inverse Function Theorem Symmetric Function Theorems

Symmetric Implicit Function Theorem

Theorem (Symmetric Implicit Function Theorem)
Let f : Rd ×Rn → Rn be continuously differentiable in a neighbourhood
of (p̄, x̄) and such that f (p̄, x̄) = 0, and let ∇pf (p̄, x̄) be of full rank n.
Then the following are equivalent

the solution mapping S has a single-valued localization s around p̄ for
x̄ which is continuously differentiable in a neighbourhood Q of p̄
∇x f (p̄, x̄) is nonsingular.
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Implicit Function Theorem and Inverse Function Theorem Symmetric Function Theorems

Symmetric Inverse Function Theorem

Theorem (Symmetric Inverse Function Theorem)
Let f : Rn → Rn be continuously differentiable around x̄ . Then the
following are equivalent

∇f (x̄) is nonsingular.
f −1 has a single-valued localization around ȳ := f (x̄) for x̄ which is
continuously differentiable around ȳ .

Proof: Classical Inverse Function Theorem + Symmetric Implicit Function
Theorem

Selina Klien Implicit Functions and Solution Mappings 12. November 2015 25 / 45



Calmness Definition

Outline

1 Introduction
Important Definitions

2 Implicit Function Theorem and Inverse Function Theorem
Classical Implicit Function Theorem
Classical Inverse Function Theorem
Symmetric Function Theorems

3 Calmness
Definition

4 Lipschitz Continuity
Definition
Symmetric Inverse/Implicit Function Theorem Under Strict
Differentiability

Selina Klien Implicit Functions and Solution Mappings 12. November 2015 26 / 45



Calmness Definition

Calmness

Definition (Calmness)
A function f : Rn → Rm is said to be calm at x̄ relative to a set D in Rn

if x̄ ∈ D ∩ domf and there exists a constant κ ≥ 0 such that

|f (x)− f (x̄)| ≤ κ|x − x̄ | ∀x ∈ D ∩ domf

Definition (Lipschitz Continuous Functions)
A function f : Rn → Rm is said to be Lipschitz continuous relative to a set
D, or on a set D, if D ⊂ domf and there exists a constant κ ≥ 0 such that

|f (x)− f (x ′)| ≤ κ|x − x ′| ∀x , x ′ ∈ D
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Calmness Definition

Calmness Modulus

Definition (Calmness Modulus)
The calmness modulus of f at x̄ , denoted clm(f ; x̄) is defined by

clm(f ; x̄) := lim sup
x∈domf ,x→x̄ ,x 6=x̄

|f (x)− f (x̄)|
|x − x̄ |

It is obvious that

f is calm at x̄ ⇐⇒ clm(f ; x̄) <∞
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Calmness Definition

Lipschitz vs Calmness34 1 Introduction and Equation-Solving Background

Fig. 1.6 Plots of a calm and a Lipschitz continuous function. On the left is the plot of the function
f (x) = (−1)n+19x+(−1)n22n+1/5n−2, |x| ∈ [xn+1,xn] for xn = 4n−1/5n−2, n = 1,2, . . . for which
clm( f ; 0) < lip( f ; 0) < ∞. On the right is the plot of the function f (x) = (−1)n+1(6 + n)x +
(−1)n210(5+ n)!/(6+ n)!, |x| ∈ [xn+1,xn] for xn = 210(4+ n)!/(6+ n)!, n = 1,2, . . . for which
clm( f ; 0)< lip( f ; 0) = ∞

It follows that

|y1− y0| ≤ |x1− x0|.

Thus, PC is Lipschitz continuous with Lipschitz constant 1.

Projection mappings have many uses in numerical analysis and optimization.
Note that PC always fails to be differentiable on the boundary of C. As an example,
when C is the set of nonpositive reals R− one has

PC(x) =

{
0 for x ≥ 0,

x for x < 0

and this function is not differentiable at x = 0.
It is clear from the definitions of the calmness and Lipschitz moduli that we

always have

clm( f ; x̄)≤ lip( f ; x̄).

This relation is illustrated in Fig. 1.6.
In the preceding section we showed how to characterize differentiability through

calmness. Now we introduce a sharper concept of derivative which is tied up with
the Lipschitz modulus.

Strict Differentiability. A function f :Rn→Rm is said to be strictly differentiable
at a point x̄ if there is a linear mapping A :Rn→Rm such that

lip(e; x̄) = 0 for e(x) = f (x)− [ f (x̄)+A(x− x̄)].

1.f (x) = (−1)n+19x + (−1)n 22n+1

5n−2 , |x | ∈
[

4n

5n−1 ,
4n−1

5n−2

]

2. f (x) = (−1)n+1(6 + n)x + (−1)n210(5 + n)!
(6 + n)! ,

|x | ∈
[
210(5 + n)!

(7 + n)! , 210
(4 + n)!
(6 + n)!

]
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Calmness Definition

Properties of Calmness Modulus

clm(f ; x̄) ≥ 0 for every x̄ ∈ domf
clm(λf ; x̄) = |λ|clm(f ; x̄) for any λ ∈ R and x̄ ∈ domf
clm(f + g ; x̄) ≤ clm(f ; x̄) + clm(g ; x̄) any ∀x̄ ∈ domf ∩ domg

clm(f ◦ g ; x̄) ≤ clm(f ; x̄) · clm(g ; x̄) whenever x̄ ∈ domg
and g(x̄) ∈ dom f
clm(f + g ; x̄) = 0⇒ clm(f ; x̄) = clm(g ; x̄) whenever x̄ ∈ domg∩
domf
(converse is false!!!)

Selina Klien Implicit Functions and Solution Mappings 12. November 2015 30 / 45



Calmness Definition

Partial Calmness

Definition
A function f : Rd ×Rn → Rn is said to be calm w. r. t. x at (p̄, x̄) ∈
domf when the function φ with values φ(x̄) = f (p̄, x) is calm at x̄ .
Such calmness is said to be uniform in p at (p̄, x̄) when there exists a
constant κ ≥ 0 and neighbourhoods Q of p and U of x̄ such that actually

|f (p, x)− f (p, x̄)| ≤ κ|x − x̄ | ∀(p, x) ∈ (Q × U) ∩ domf

The partial calmness modulus of f w. r. t. x at (p̄, x̄) is denoted as
clmx (f ; (p̄, x̄)).
While the uniform partial calmness modulus is

ĉlmx (f ; (p̄, x̄)) := lim sup
x→x̄ ,p→p̄,(p,x)∈domf ,x 6=x̄

|f (p, x)− f (p, x̄)|
|x − x̄ | .
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Calmness Definition

The Theorems shows that the invertibility of the derivative is a necessary
condition to obtain a calm single valued localization of the inverse.

Theorem (Jacobian Nonsingularity from Inverse Calmness)
Given f : Rn → Rn and x̄ ∈ int domf . Let f be differentiable at x̄ and let
ȳ = f (x̄).
If f −1 has a single-valued localization around ȳ for x̄ , which is calm at ȳ
then ∇f (x̄) is nonsingular.
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Lipschitz Continuity Definition

Lipschitz Continuity

Definition (Lipschitz Continuous Functions)
A function f : Rn → Rm is said to be Lipschitz continuous relative to a set
D, or on a set D, if D ⊂ domf and there exists a constant κ ≥ 0 such that

|f (x)− f (x ′)| ≤ κ|x − x ′| ∀x , x ′ ∈ D

Definition (Lipschitz Modulus)
The Lipschitz modulus of f at x̄ , denoted clm(f ; x̄) is defined by

lip(f ; x̄) := lim sup
x ′,x→x̄ ,x 6=x ′

|f (x)− f (x ′)|
|x − x ′|

It is obvious that

f is Lipschitz continuous around x̄ ⇐⇒ lip(f ; x̄) <∞
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Lipschitz Continuity Definition

Lipschitz Continuity from Differentiability

Theorem
If f is continuously differentiable on an open set O and C is a compact
convex subset of O, then f is Lipschitz continuous relative to C with
constant

κ = max
x∈C
|∇f (x)|.

Proof: Analysis.
Easy Examples:

The function x 7→ x2 is differentiable on R, but not Lipschitz
continuous on R.
The function x 7→ |x | is Lipschitz continuous with lip(|x |, x) = 1 on R
but it is not differentiable at 0.

Selina Klien Implicit Functions and Solution Mappings 12. November 2015 35 / 45



Lipschitz Continuity Definition

Strict Differentiability

Definition (Strict Differentiability)
A function f : Rn → Rm is said to be strictly differentiable at point x̄ if
there is a linear mapping A : Rn → Rm such that

lip(e; x̄) = 0 for e(x) = f (x)− [f (x̄) + A(x − x̄)]

lip(e; x̄) = lim sup
x ′,x→x̄ ,x 6=x ′

|f (x)− [f (x ′) + A(x − x ′)]|
|x − x ′|

Definition
A function f is differentiable if there exists a linear mapping A : Rn → Rm

such that

clm(e, x̄) = 0, clm(e, x̄) = lim sup
x∈domf ,x→x̄ ,x 6=x̄

|f (x)− [f (x̄) + A(x − x̄)]|
|x − x̄ |

If f is differentiable at x̄ then A = ∇f (x̄).
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Lipschitz Continuity Definition

Strict Differentiability vs Differentiability
1.4 [1D] Lipschitz Continuity 35

Fig. 1.7 Plots of functions differentiable at the origin. The function on the left is strictly
differentiable at the origin but not continuously differentiable. The function on the right is
differentiable at the origin but not strictly differentiable there

In particular, in this case we have that clm(e; x̄) = 0 and hence f is differentiable
at x̄ with A = ∇ f (x̄), but strictness imposes a requirement on the difference

e(x)− e(x′) = f (x)− [ f (x′)+∇ f (x̄)(x− x′)]

also when x′ 
= x̄. Specifically, it demands the existence for each ε > 0 of a
neighborhood U of x̄ such that

| f (x)− [ f (x′)+∇ f (x̄)(x− x′)]| ≤ ε|x− x′| for every x,x′ ∈U.

Exercise 1D.6 (Strict Differentiability from Continuous Differentiability). Prove
that every function f that is continuously differentiable in a neighborhood of x̄ is
strictly differentiable at x̄.

Guide. Adopt formula (b) in Fact 1 in the beginning of Sect. 1.1 [1A].

The converse to the assertion in Exercise 1D.6 is false, however: f can be
strictly differentiable at x̄ without being continuously differentiable around x̄. This
is demonstrated in Fig. 1.7 showing the graphs of two functions that are both
differentiable at origin but otherwise have different properties. On the left is the
graph of the continuous function f : [−1,1]→ R which is even, and on [0,1] has
values f (0) = 0, f (1/n) = 1/n2, and is linear in the intervals [1/n,1/(n+ 1)]. This
function is strictly differentiable at 0, but in every neighborhood of 0 there are
points where differentiability is lacking. On the right is the graph of the function5

f (x) =

{
x/2+ x2 sin(1/x) for x 
= 0,

0 for x = 0,

which is differentiable at 0 but not strictly differentiable there.

5These two examples are from Nijenhuis (1974), where the introduction of strict differentiability
is attributed to Leach (1961), but a recent paper by Dolecki and Greco (2011) suggests that it goes
back to Peano (1892). By the way, Nijenhuis dedicated his paper to Carl Allendoerfer “for not
taking the implicit function theorem for granted,” which is the leading quotation in this book.

1. f (0) = 0, f
(1
n

)
= 1

n2 and it is linear in the Intervals
[1
n ,

1
n + 1

]
2. f (0) = 0, f (x) = x

2 + x2 sin
(1
x

)
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Lipschitz Continuity Definition

Properties of Strict Differentiability

f is continuously differentiable in a neighbourhood of x̄ ⇒ f is strictly
differentiable at x̄
f is strictly differentiable on an open set O ⇐⇒ f is continuously
differentiable on O
f is differentiable at every point in a neighbourhood of x̄ . Then

f is strictly differentiable at x̄ ⇐⇒ ∇f ist continuous at x̄
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Lipschitz Continuity
Symmetric Inverse/Implicit Function Theorem Under Strict

Differentiability

Symmetric Inverse Function Theorem Under Strict
Differentiability

Theorem (Symmetric Inverse Function Theorem Under Strict
Differentiability)
Let f : Rn → R be strictly differentiable at x̄ . Then the following are
equivalent

∇f (x̄) is nonsingular
f −1 has a single-valued localization s around ȳ := f (x̄) for x̄ which is
strictly differentiable at ȳ . In that case, moreover

∇s(ȳ) = ∇f (x̄)−1
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Lipschitz Continuity
Symmetric Inverse/Implicit Function Theorem Under Strict

Differentiability

Strict Partial Differentiability

Definition (Strict Partial Differentiability)
A function f : Rd ×Rn → Rm is said to be strictly differentiable with
respect to x at (p̄, x̄) if the function x 7→ f (p̄, x) is strictly differentiable
at x̄ . It is said to be strictly differentiable with respect to x uniformly in p
at (p̄, x̄) if for every ε > 0 there are neighbourhoods Q of p̄ and U of x̄
such that

|f (p, x)− [f (p, x ′) +Dx f (p̄, x̄)(x − x ′)]| ≤ ε|x − x ′| ∀x , x ′ ∈ U∀p ∈ Q.
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Lipschitz Continuity
Symmetric Inverse/Implicit Function Theorem Under Strict

Differentiability

Implicit Functions Under Strict Partial Differentiability

Theorem (Implicit Functions Under Strict Partial Differentiability)
Let f : Rd ×Rn → Rn be strictly differentiable at a point (p̄, x̄) and such
that f (p̄, x̄) = 0 and let the partial Jacobian ∇x f (p̄, x̄) be nonsingular.
Then the solution mapping

S : p 7→ {x ∈ Rn|f (p, x) = 0}

has a single-valued localization s around p̄ for x̄ which is strictly
differentiable at p̄ with its Jacobian expressed by

∇s(p̄) = −∇x f (p̄, x̄)−1∇pf (p̄, x̄).

Proof: Similar to the proof of the Classic Implicit Function Theorem.
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Summary - Inverse Function Theorem

Let f : Rn → Rn be continuously differentiable around / strictly
differentiable at x̄ and let ȳ = f (x̄). Then the following are equivalent

∇f is nonsingular
f −1 has a single-valued localization s around ȳ := f (x̄) for x̄ which is
continuously differentiable around / strictly differentiable at ȳ . In
that case, moreover

∇s(y) = ∇f (s(y))−1 y ∈ Uε(ȳ)
∇s(ȳ) = ∇f (x̄)−1

Let f : Rn → Rn be differentiable at x̄ ∈ int domf and let ȳ = f (x̄).
If f −1 has a single-valued localization around ȳ for x̄ , which is calm at ȳ
then ∇f (x̄) is nonsingular.
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Summary - Implicit Functions

Let f : Rd ×Rn → Rn be continuously differentiable around / strictly
differentiable at (p̄, x̄) and such that f (p̄, x̄) = 0 and let the partial
Jacobian ∇x f (p̄, x̄) be nonsingular.

Then the solution mapping S has a single-valued localization s around p̄
for x̄ which is continuously differentiable around / strictly differentiable at
p̄ with its Jacobian expressed by

∇s(p) = −∇x f (p, s(p))−1∇pf (p, s(p)) p ∈ Uε(p̄)
∇s(p̄) = −∇x f (p̄, x̄)−1∇pf (p̄, x̄).
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Thank you for your attention
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