The Implicit Function and Inverse Function Theorems

Selina Klien

12. November 2015

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Ideas Of Solving Equations

There are different ways to solve equations. Two ideas:

- Let $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function. We want to solve the equation

$$
f(p, x)=0
$$

Idea: x is a function of $p: \quad x=s(p)$, such that

$$
f(p, s(p))=0
$$

The function $x=s(p)$ is defined implicitly by the equation.

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function. The idea of solving the equation

$$
f(x)=y
$$

for x as a function of y concerns the inversion of f.

Important Theorems

When does such a function $s(p)$ or inversion of f exist?
There are two well-known theorems, which guarantee us a at least local solution under special conditions:

- Implicit Function Theorem
- Inverse Function Theorem

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Solution Mapping

'Problem': fix vector p and we are looking for a 'solution' x such that the equation $f(p, x)=0$ holds.
\Rightarrow solution mapping S as set-valued mapping signaled by the notation:

$$
\begin{aligned}
S & : \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n} \\
p & \mapsto\{x \in \mathbb{R} \mid f(p, x)=0\}
\end{aligned}
$$

The graph of S is the set

$$
\operatorname{gph} S=\left\{(p, x) \in \mathbb{R}^{d} \times \mathbb{R}^{n} \mid x \in S(p)\right\}
$$

What are the properties of set-valued mappings?

Properties of set-valued mappings

General set-valued mapping

$$
F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}
$$

with graph of F

$$
\operatorname{gph} F=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \mid y \in F(x)\right\}
$$

F is ...
\ldots empty-valued at $x: \Leftrightarrow F(x)=\emptyset$
\ldots. single-valued at $x: \Leftrightarrow F(x)=y$ with $y \in \mathbb{R}^{m}$
\ldots multivalued at $x: \Leftrightarrow F(x)$ assigns more than one element, $|F(x)| \geq 2$.

Domain and Range of F

Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ be a set-valued mapping. The domain of F is the set

$$
\operatorname{dom} F=\{x \mid F(x) \neq \emptyset\}
$$

while the range of F is

$$
\operatorname{rge} F=\{y \mid y \in F(x) \text { for some } x\}
$$

A function from \mathbb{R}^{n} to \mathbb{R}^{m} is a set-valued mapping $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ which ist single-valued at every point of dom F.

We can emphasize this by writing $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Inverse of set-valued mappings

One advantage of the framework of set-valued mappings:
Every set-valued mapping $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ has an inverse, namely the set valued mapping $F^{-1}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{n}$ defined by

$$
F^{-1}(y)=\{x \mid y \in F(x)\}
$$

In this manner a function f always has an inverse f^{-1} as a set-valued mapping.

When is the set-valued mapping f^{-1} a function?

Graphical Localization

For $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ and a pair $(\bar{x}, \bar{y}) \in$ gph F, a graphical localization of F at \bar{x} for \bar{y} is a set-valued mapping \bar{F}, such that

$$
\operatorname{gph} \bar{F}=(U \times V) \cap \operatorname{ghp} F \text { for some neighborhoods } U \text { of } \bar{x} \text { and } V \text { of } \bar{y}
$$

so that

$$
\begin{gathered}
\bar{F}: x \mapsto \begin{cases}F(x) \cap V & x \in U \\
\emptyset\end{cases} \\
\bar{F}^{-1}: x \mapsto \begin{cases}F^{-1}(y) \cap U & y \in V \\
\emptyset\end{cases}
\end{gathered}
$$

Single-Valued Localization

Definition

By a single-valued localization of F at \bar{x} will be meant a graphical localization that is a function, its domain not necessarily being a neighbourhood of \bar{x}.
The case where the domain is indeed a neighbourhood of \bar{x} will be indicated by referring to a single-valued localization of F around \bar{x} for \bar{y}, instead of just \bar{x} for \bar{y}.

The Solution Mapping

The solution mapping of $f(p, x)=0$ is a set-valued mapping, which is defined by

$$
\begin{array}{r}
S: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n} \\
S(p)=\{x \mid f(p, x)=0\}
\end{array}
$$

We can look at pairs (\bar{p}, \bar{x}) in $\operatorname{gph} S$ and ask whether S has a single-valued localization s around \bar{p} for \bar{x}. Such a localization is exactly what constitutes an implicit function coming out of the equation.

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Classical Implicit Function Theorem

Theorem

Let $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable in a neighbourhood of a point (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x})=0$, and let the partial Jacobian of f with respect to x at (\bar{p}, \bar{x}), namely $\nabla_{x} f(\bar{p}, \bar{x})$, be nonsingular.
Then the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p} with Jacobian satisfying

$$
\nabla s(p)=-\nabla_{x} f(p, s(p))^{-1} \nabla_{p} f(p, s(p)) \quad \forall p \in Q
$$

Contraction Mapping Principle

Theorem (Contraction Mapping Principle)
Let X be a complete metric space with metric d. Consider a point $\bar{x} \in X$ and function $\phi: X \rightarrow X$ for which there exist scalars $a>0$ and $\lambda \in[0,1)$ such that

$$
\begin{aligned}
& \text { 1.d } d(\phi(\bar{x}), \bar{x}) \leq a(1-\lambda) \\
& \text { 2.d }\left(\phi\left(x^{\prime}\right), \phi(x)\right) \leq \lambda d\left(x^{\prime}, x\right) \quad \forall x, x^{\prime} \in \mathbb{B}_{a}(\bar{x})
\end{aligned}
$$

Then there is a unique $x \in \mathbb{B}_{a}(\bar{x})$ satisfying $x=\phi(x)$.

Proof: Analysis

Another equivalent version of contraction mapping principle:

Parametric Contraction Mapping Principle

Theorem

Let X be a complete metric space and, P be a metric space with metrics d_{x}, d_{p} and let $\phi: P \times X \rightarrow X$. Suppose that there exist $a \in[0,1)$ and $\mu \geq 0$ such that

$$
\begin{array}{ll}
d_{x}\left(\phi\left(p, x^{\prime}\right), \phi(p, x)\right) \leq \lambda d_{x}\left(x^{\prime}, x\right) & \forall x, x^{\prime} \in X \forall p \in P \\
d_{x}\left(\phi\left(p^{\prime}, x\right), \phi(p, x)\right) \leq \mu d_{p}\left(p^{\prime}, p\right) & \forall p, p^{\prime} \in P \forall x \in X
\end{array}
$$

then the mapping

$$
\Psi: p \mapsto\{x \in X \mid x=\phi(p, x)\} \quad \text { for } p \in P
$$

is single-valued on P, which is moreover Lipschitz continuous on P with Lipschitz constant $\mu /(1-\lambda)$.

Sketch Of Proof

Step 1: Existence of a single-valued localization $s(p)=x$ To show: The function

$$
\begin{array}{r}
\psi: \mathbb{R}^{q} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
(p, x) \mapsto x-D^{-1} f(p, x)
\end{array}
$$

where $D:=\nabla_{x} f(\bar{p}, \bar{x})$, satisfies the condition of the Parametric Contraction Mapping Principle - Theorem.
\Rightarrow single-valued localization in a neighbourhood of (\bar{p}, \bar{x}).

$$
s: p \mapsto\left\{x \mid x=\psi(p, x)=x-D^{-1} f(p, x)\right\}
$$

Step 2: Derivative of s Use Chainrule. Let $p \in U(\bar{p})$

$$
\begin{aligned}
0 & =f(p, s(p)) \\
0 & =\nabla_{p} f(p, s(p))+\nabla_{x} f(p, s(p)) \nabla_{p} s(p) \\
\Leftrightarrow \nabla s(p) & =-\nabla_{x} f(p, s(p))^{-1} \nabla_{p} f(p, s(p))
\end{aligned}
$$

Step 3: Continuous differentiability of s
f is continuously differentiable and $\nabla_{x} f(\bar{p}, \bar{x})$ is nonsingular.

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Classical Inverse Function Theorem

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable in a neighbourhood of a point \bar{x} and let $\bar{y}=f(\bar{x})$. If $\nabla f(\bar{x})$ is nonsingular, then f^{-1} has a single-valued localization s around \bar{y} for \bar{x}. Moreover, the function s is continuously differentiable in a neighbourhood V of \bar{y}, and its Jacobian satisfies

$$
\nabla s(y)=\nabla f(s(y))^{-1} \quad \forall y \in V
$$

Sketch Of Proof

The Inverse Function Theorem is a special case of the Implicit Function Theorem:

Sketch of Proof: Let $\bar{f}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $\bar{f}(x, y)=f(x)-y$. f is continuously differentiable and hence \bar{f} is continuously differentiable and $\nabla_{x} \bar{f}(\bar{x}, \bar{y})=\nabla f(\bar{x})$ is nonsingular.
\Rightarrow a single valued function exists:

$$
s: y \mapsto\{x \mid f(x)-y=0\}=\{x \mid f(x)=y\}
$$

And

$$
\nabla s(y)=-\nabla_{x} \bar{f}(x, y)^{-1} \nabla_{y} \bar{f}(x, y)=\nabla f(x)^{-1}
$$

Are there any conditions such that the following two statements are equivalent?

- the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p}
- $\nabla_{x} f(\bar{p}, \bar{x})$ is nonsingular.

Answer: Yes! The condition: $\nabla_{p} f(\bar{p}, \bar{x})$ has full rank n.

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition
- Lipschitz Continuity
- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Symmetric Implicit Function Theorem

Theorem (Symmetric Implicit Function Theorem)
Let $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable in a neighbourhood of (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x})=0$, and let $\nabla_{p} f(\bar{p}, \bar{x})$ be of full rank n. Then the following are equivalent

- the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable in a neighbourhood Q of \bar{p}
- $\nabla_{x} f(\bar{p}, \bar{x})$ is nonsingular.

Symmetric Inverse Function Theorem

Theorem (Symmetric Inverse Function Theorem)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable around \bar{x}. Then the following are equivalent

- $\nabla f(\bar{x})$ is nonsingular.
- f^{-1} has a single-valued localization around $\bar{y}:=f(\bar{x})$ for \bar{x} which is continuously differentiable around \bar{y}.

Proof: Classical Inverse Function Theorem + Symmetric Implicit Function Theorem

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems

(3) Calmness

- Definition
(4) Lipschitz Continuity
- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Calmness

Definition (Calmness)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be calm at \bar{x} relative to a set D in \mathbb{R}^{n} if $\bar{x} \in D \cap \operatorname{dom} f$ and there exists a constant $\kappa \geq 0$ such that

$$
|f(x)-f(\bar{x})| \leq \kappa|x-\bar{x}| \quad \forall x \in D \cap \operatorname{dom} f
$$

Definition (Lipschitz Continuous Functions)
A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be Lipschitz continuous relative to a set D, or on a set D, if $D \subset \operatorname{dom} f$ and there exists a constant $\kappa \geq 0$ such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq \kappa\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in D
$$

Calmness Modulus

Definition (Calmness Modulus)
The calmness modulus of f at \bar{x}, denoted $\operatorname{clm}(f ; \bar{x})$ is defined by

$$
\operatorname{clm}(f ; \bar{x}):=\limsup _{x \in \operatorname{dom} f, x \rightarrow \bar{x}, x \neq \bar{x}} \frac{|f(x)-f(\bar{x})|}{|x-\bar{x}|}
$$

It is obvious that

$$
\text { fis calm at } \bar{x} \Longleftrightarrow \operatorname{clm}(f ; \bar{x})<\infty
$$

Lipschitz vs Calmness

$$
\begin{aligned}
& \text { 1.f }(x)=(-1)^{n+1} 9 x+(-1)^{n} \frac{2^{2 n+1}}{5^{n-2}},|x| \in\left[\frac{4^{n}}{5^{n-1}}, \frac{4^{n-1}}{5^{n-2}}\right] \\
& \text { 2. } f(x)=(-1)^{n+1}(6+n) x+(-1)^{n} 210 \frac{(5+n)!}{(6+n)!} \\
& |x| \in\left[210 \frac{(5+n)!}{(7+n)!}, 210 \frac{(4+n)!}{(6+n)!}\right]
\end{aligned}
$$

Properties of Calmness Modulus

- $\operatorname{clm}(f ; \bar{x}) \geq 0$ for every $\bar{x} \in \operatorname{dom} f$
- $\operatorname{clm}(\lambda f ; \bar{x})=|\lambda| \operatorname{clm}(f ; \bar{x})$ for any $\lambda \in \mathbb{R}$ and $\bar{x} \in \operatorname{dom} f$
- $\operatorname{clm}(f+g ; \bar{x}) \leq \operatorname{clm}(f ; \bar{x})+\operatorname{clm}(g ; \bar{x})$ any $\forall \bar{x} \in \operatorname{dom} f \cap \operatorname{dom} g$
- $\operatorname{clm}(f \circ g ; \bar{x}) \leq \operatorname{clm}(f ; \bar{x}) \cdot \operatorname{clm}(g ; \bar{x})$ whenever $\bar{x} \in \operatorname{dom} g$ and $g(\bar{x}) \in \operatorname{dom} f$
- $\operatorname{clm}(f+g ; \bar{x})=0 \Rightarrow \operatorname{clm}(f ; \bar{x})=\operatorname{clm}(g ; \bar{x})$ whenever $\bar{x} \in \operatorname{dom} g \cap$ domf (converse is false!!!)

Partial Calmness

Definition

A function $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be calm w.r. t. x at $(\bar{p}, \bar{x}) \in$ $\operatorname{dom} f$ when the function ϕ with values $\phi(\bar{x})=f(\bar{p}, x)$ is calm at \bar{x}. Such calmness is said to be uniform in p at (\bar{p}, \bar{x}) when there exists a constant $\kappa \geq 0$ and neighbourhoods Q of p and U of \bar{x} such that actually

$$
|f(p, x)-f(p, \bar{x})| \leq \kappa|x-\bar{x}| \quad \forall(p, x) \in(Q \times U) \cap \operatorname{dom} f
$$

The partial calmness modulus of f w.r.t. x at (\bar{p}, \bar{x}) is denoted as $\operatorname{clm}_{x}(f ;(\bar{p}, \bar{x}))$.
While the uniform partial calmness modulus is

$$
\widehat{\operatorname{com}}(f ;(\bar{p}, \bar{x})):=\limsup _{x \rightarrow \bar{x}, p \rightarrow \bar{p},(p, x) \in \operatorname{dom} f, x \neq \bar{x}} \frac{|f(p, x)-f(p, \bar{x})|}{|x-\bar{x}|} .
$$

The Theorems shows that the invertibility of the derivative is a necessary condition to obtain a calm single valued localization of the inverse.

Theorem (Jacobian Nonsingularity from Inverse Calmness)
Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\bar{x} \in$ int domf. Let f be differentiable at \bar{x} and let $\bar{y}=f(\bar{x})$.
If f^{-1} has a single-valued localization around \bar{y} for \bar{x}, which is calm at \bar{y} then $\nabla f(\bar{x})$ is nonsingular.

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Lipschitz Continuity

Definition (Lipschitz Continuous Functions)
A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be Lipschitz continuous relative to a set D, or on a set D, if $D \subset \operatorname{dom} f$ and there exists a constant $\kappa \geq 0$ such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq \kappa\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in D
$$

Definition (Lipschitz Modulus)

The Lipschitz modulus of f at \bar{x}, denoted $\operatorname{clm}(f ; \bar{x})$ is defined by

$$
\operatorname{lip}(f ; \bar{x}):=\limsup _{x^{\prime}, x \rightarrow \bar{x}, x \neq x^{\prime}} \frac{\left|f(x)-f\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|}
$$

It is obvious that
fis Lipschitz continuous around $\bar{x} \Longleftrightarrow \operatorname{lip}(f ; \bar{x})<\infty$

Lipschitz Continuity from Differentiability

Theorem

If f is continuously differentiable on an open set O and C is a compact convex subset of O, then f is Lipschitz continuous relative to C with constant

$$
\kappa=\max _{x \in C}|\nabla f(x)| .
$$

Proof: Analysis.
Easy Examples:

- The function $x \mapsto x^{2}$ is differentiable on \mathbb{R}, but not Lipschitz continuous on \mathbb{R}.
- The function $x \mapsto|x|$ is Lipschitz continuous with $\operatorname{lip}(|x|, x)=1$ on \mathbb{R} but it is not differentiable at 0 .

Strict Differentiability

Definition (Strict Differentiability)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be strictly differentiable at point \bar{x} if there is a linear mapping $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{aligned}
& \operatorname{lip}(e ; \bar{x})=0 \text { for } e(x)=f(x)-[f(\bar{x})+A(x-\bar{x})] \\
& \operatorname{lip}(e ; \bar{x})=\limsup _{x^{\prime}, x \rightarrow \bar{x}, x \neq x^{\prime}} \frac{\left|f(x)-\left[f\left(x^{\prime}\right)+A\left(x-x^{\prime}\right)\right]\right|}{\left|x-x^{\prime}\right|}
\end{aligned}
$$

Definition

A function f is differentiable if there exists a linear mapping $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\operatorname{clm}(e, \bar{x})=0, \quad \operatorname{clm}(e, \bar{x})=\limsup _{x \in \operatorname{dom} f, x \rightarrow \bar{x}, x \neq \bar{x}} \frac{|f(x)-[f(\bar{x})+A(x-\bar{x})]|}{|x-\bar{x}|}
$$

If f is differentiable at \bar{x} then $A=\nabla f(\bar{x})$.

Strict Differentiability vs Differentiability

1. $f(0)=0, f\left(\frac{1}{n}\right)=\frac{1}{n^{2}}$ and it is linear in the Intervals $\left[\frac{1}{n}, \frac{1}{n+1}\right]$
2. $f(0)=0, f(x)=\frac{x}{2}+x^{2} \sin \left(\frac{1}{x}\right)$

Properties of Strict Differentiability

- f is continuously differentiable in a neighbourhood of $\bar{x} \Rightarrow f$ is strictly differentiable at \bar{x}
- f is strictly differentiable on an open set $O \Longleftrightarrow f$ is continuously differentiable on O
- f is differentiable at every point in a neighbourhood of \bar{x}. Then
f is strictly differentiable at $\bar{x} \Longleftrightarrow \nabla f$ ist continuous at \bar{x}

Outline

(1) Introduction

- Important Definitions
(2) Implicit Function Theorem and Inverse Function Theorem
- Classical Implicit Function Theorem
- Classical Inverse Function Theorem
- Symmetric Function Theorems
(3) Calmness
- Definition

4 Lipschitz Continuity

- Definition
- Symmetric Inverse/Implicit Function Theorem Under Strict Differentiability

Symmetric Inverse Function Theorem Under Strict Differentiability

Theorem (Symmetric Inverse Function Theorem Under Strict Differentiability)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be strictly differentiable at \bar{x}. Then the following are equivalent

- $\nabla f(\bar{x})$ is nonsingular
- f^{-1} has a single-valued localization s around $\bar{y}:=f(\bar{x})$ for \bar{x} which is strictly differentiable at \bar{y}. In that case, moreover

$$
\nabla s(\bar{y})=\nabla f(\bar{x})^{-1}
$$

Strict Partial Differentiability

Definition (Strict Partial Differentiability)

A function $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be strictly differentiable with respect to x at (\bar{p}, \bar{x}) if the function $x \mapsto f(\bar{p}, x)$ is strictly differentiable at \bar{x}. It is said to be strictly differentiable with respect to x uniformly in p at (\bar{p}, \bar{x}) if for every $\epsilon>0$ there are neighbourhoods Q of \bar{p} and U of \bar{x} such that

$$
\left|f(p, x)-\left[f\left(p, x^{\prime}\right)+D_{x} f(\bar{p}, \bar{x})\left(x-x^{\prime}\right)\right]\right| \leq \epsilon\left|x-x^{\prime}\right| \quad \forall x, x^{\prime} \in U \forall p \in Q
$$

Implicit Functions Under Strict Partial Differentiability

Theorem (Implicit Functions Under Strict Partial Differentiability)
Let $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be strictly differentiable at a point (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x})=0$ and let the partial Jacobian $\nabla_{x} f(\bar{p}, \bar{x})$ be nonsingular.
Then the solution mapping

$$
S: p \mapsto\left\{x \in \mathbb{R}^{n} \mid f(p, x)=0\right\}
$$

has a single-valued localization s around \bar{p} for \bar{x} which is strictly differentiable at \bar{p} with its Jacobian expressed by

$$
\nabla s(\bar{p})=-\nabla_{x} f(\bar{p}, \bar{x})^{-1} \nabla_{p} f(\bar{p}, \bar{x}) .
$$

Proof: Similar to the proof of the Classic Implicit Function Theorem.

Summary - Inverse Function Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable around / strictly differentiable at \bar{x} and let $\bar{y}=f(\bar{x})$. Then the following are equivalent

- ∇f is nonsingular
- f^{-1} has a single-valued localization s around $\bar{y}:=f(\bar{x})$ for \bar{x} which is continuously differentiable around / strictly differentiable at \bar{y}. In that case, moreover

$$
\begin{aligned}
& \nabla s(y)=\nabla f(s(y))^{-} 1 \quad y \in U_{\epsilon}(\bar{y}) \\
& \nabla s(\bar{y})=\nabla f(\bar{x})^{-1}
\end{aligned}
$$

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be differentiable at $\bar{x} \in \operatorname{int} \operatorname{dom} f$ and let $\bar{y}=f(\bar{x})$. If f^{-1} has a single-valued localization around \bar{y} for \bar{x}, which is calm at \bar{y} then $\nabla f(\bar{x})$ is nonsingular.

Summary - Implicit Functions

Let $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable around / strictly differentiable at (\bar{p}, \bar{x}) and such that $f(\bar{p}, \bar{x})=0$ and let the partial Jacobian $\nabla_{x} f(\bar{p}, \bar{x})$ be nonsingular.

Then the solution mapping S has a single-valued localization s around \bar{p} for \bar{x} which is continuously differentiable around / strictly differentiable at \bar{p} with its Jacobian expressed by

$$
\begin{aligned}
& \nabla s(p)=-\nabla_{x} f(p, s(p))^{-1} \nabla_{p} f(p, s(p)) \quad p \in U_{\epsilon}(\bar{p}) \\
& \nabla s(\bar{p})=-\nabla_{x} f(\bar{p}, \bar{x})^{-1} \nabla_{p} f(\bar{p}, \bar{x}) .
\end{aligned}
$$

Thank you for your attention

