Extended Robinson, parametrizations and semiderivatives

Talk nr.4

Daniel Jodlbauer

December 1, 2015

Daniel Jodlbauer

Extended Robinson, parametrizations and semiderivativ

December 1, 2015 1 / 24

Overview

O Robinson's Implicit Function Theorem

- Previous formulation
- Special case
- Parametrizations
 - Ampleness
 - Solution mappings
- Semiderivatives
 - New Implicit Function Theorem
- Piecewise Smooth Functions

-

Robinson Theorem Extended Beyond Differentiability

Theorem (2B.5 Robinson Implicit Function Theorem) *If*

- f(.,x̄) is continuous at p̄ and h a strict estimator of f wrt. x unif. in p at (p̄, x̄) with constant μ;
- the inverse G^{-1} of $G = h + F, 0 \in G(\overline{x})$ has a Lip-cont. svl. σ around 0 with $lip(\sigma; 0) \leq \kappa$ and $\kappa \mu < 1$.

then $S(p) = \{x | f(p, x) + F(x) \ni 0\}$ has a svl. s around \overline{p} for \overline{x} , which is continuous at \overline{p} and for every $\epsilon > 0$, there is a neighbourhood Q of \overline{p} such that

$$|s(p') - s(p)| \leq rac{\kappa + \epsilon}{1 - \kappa \mu} |f(p', s(p)) - f(p, s(p))| \quad orall p', p \in Q$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Extended Implicit Function Theorem with First-Order Approximations

Theorem (2B.9)

Let the assumptions of Robinson Theorem hold for $\mu = 0$, i.e.:

- f(., x̄) is continuous at p̄ and h a strict first-order approximation of f wrt.
 x at (p̄, x̄)
- **2** the inverse G^{-1} of $G = h + F, 0 \in G(\overline{x})$ has a Lip-cont. svl. σ around 0.

Then we additionally get:

イロト イポト イヨト イヨト

(a) If $clm_p(f;(\overline{p},\overline{x})) < \infty$ then s is calm at \overline{p} with

$$clm(s; \overline{p}) \leq lip(\sigma; 0) \cdot clm_p(f; (\overline{p}; \overline{x})).$$

(b) If $\widehat{lip}_p(f;(\overline{p},\overline{x})) < \infty$ then s is Lip-cont. near \overline{p} with

$$lip(s; \overline{p}) \leq lip(\sigma; 0) \cdot \widehat{lip}_p(f; (\overline{p}; \overline{x})).$$

(c) If, along with (a), f has a first-order approximation r wrt. p at $(\overline{p}, \overline{x})$, then

$$\eta(p) = \sigma(-r(p) + f(\overline{p}, \overline{x})), \quad p \in Q,$$

is a first-order approximation at \overline{p} to s.

(d) If, in addition to all previous conditions, σ is affine $(\sigma(y) = \overline{x} + Ay)$ and r is strict, then η is strict and

$$\eta(p) = \overline{x} + A(-r(p) + f(\overline{p}, \overline{x})), \quad p \in Q.$$

イロト イポト イヨト イヨト

(a) If $clm_p(f;(\overline{p},\overline{x})) < \infty$ then $clm(s;\overline{p}) \leq lip(\sigma;0) \cdot clm_p(f;(\overline{p};\overline{x}))$. Proof.

• 2B.5 with $p := \overline{p}, \kappa = lip(\sigma; 0)$ for any $\epsilon > 0$:

$$|s(p')-s(\overline{p})|\leq rac{\kappa+\epsilon}{1-\kappa\mu}|f(p',s(\overline{p}))-f(\overline{p},s(\overline{p}))| \hspace{0.5cm} orall p'\in Q$$

limsup

(b) analogously to (a)

12.1

・ロト ・回ト ・ヨト ・

(c) If $clm_p(f;(\overline{p},\overline{x})) < \infty$ and f has a first-order approx. r wrt. p, then $\eta(p) = \sigma(-r(p) + f(\overline{p},\overline{x}))$ is a first-order approx. of s

Proof.

To show: $|s(p) - \eta(p)| = o(|p - \overline{p}|).$

•
$$s(p) = \sigma(-e(p, s(p)))$$
 for $e(p, x) = f(p, x) - h(x)$ and
 $\overline{x} = s(\overline{p}) = \sigma(0) = \eta(\overline{p})$

Make Q and U (from 2B.5) smaller, such that for all $x \in U$, $p \in Q$ and any $\epsilon > 0$:

• $-e(p,\overline{x})$ and $-r(p) + f(\overline{p},\overline{x})$ are close enough to zero, such that σ is Lip-cont.

$$|e(p,x) - e(p,\overline{x})| \le \epsilon |x - \overline{x}|$$

$$|f(p,\overline{x}) - r(p)| \le \epsilon |p - \overline{p}|$$

Utilization of Strict Differentiability

Corollary

Suppose that f is strictly differentiable at $(\overline{p}, \overline{x})$ and that G^{-1} of

$$G(x) = f(\overline{p}, \overline{x}) + \nabla_x f(\overline{p}, \overline{x})(x - \overline{x}) + F(x) = h(x) + F(x)$$

has a Lip-cont. svl. σ around 0.

Then:

- s has a first-order approximation at \overline{p} given by $\eta(p) = \sigma(-\nabla_p f(\overline{p}, \overline{x})(p \overline{p}))$
- If $F \equiv 0$, then η is strict and

$$\eta(\boldsymbol{p}) = \overline{\boldsymbol{x}} - \nabla_{\boldsymbol{x}} f(\overline{\boldsymbol{p}}, \overline{\boldsymbol{x}})^{-1} \nabla_{\boldsymbol{p}} f(\overline{\boldsymbol{p}}, \overline{\boldsymbol{x}}) (\boldsymbol{p} - \overline{\boldsymbol{p}}).$$

Conclusion: classical implicit function theorem covered by Robinson theorem.

Extended Inverse Function Theorem with First-Order Approximations

Theorem (2B.11)

Let f(p, x) = g(x) - p for some function $g : \mathbb{R}^n \to \mathbb{R}^m$ and h a strict first-order approximation to g at \overline{x} .

Then: $(g + F)^{-1}$ has a Lip-cont. svl. s around \overline{p} , if and only if $(h + F)^{-1}$ has such a localization σ .

Moreover, σ is a first-order approximation of s at \overline{p} , and

 $lip(s; \overline{p}) = lip(\sigma; \overline{p}).$

イロト イポト イヨト イヨト

Ample parametrizations

Consider the equation

$$0 \in g(x) + F(x). \tag{1}$$

Then a function $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^m$ is called

- a parametrization, if $f(\overline{p}, x) \equiv g(x)$ for a particular \overline{p} and it is
- ample at \overline{x} , if $\nabla_p f(\overline{p}, \overline{x})$ has full rank (rk = m).
- associated solution mapping

$$S: p \mapsto \{x | f(p, x) + F(x) \ni 0\}$$

$$(2)$$

イロト イポト イヨト イヨト

supplementary parameters to ensure rank condition

Daniel Jodlbauer

Equivalences from Ampleness

Theorem (2C.2)

Let f be an ample parametrization at $(\overline{p}, \overline{x})$ of g as before and let h a be strict first-order approximation of f wrt. x unif. in p at $(\overline{p}, \overline{x})$ **Then** the following statements are equivalent:

(a) S as in (2) has a Lip-cont. svl. around
$$\overline{p}$$
 for \overline{x} ;

(b) $(h + F)^{-1}$ has a Lip-cont. svl. around 0 for \overline{x} ;

(c)
$$(g + F)^{-1}$$
 has a Lip-cont. svl. around 0 for \overline{x} .

(d) \tilde{S} has a Lip-cont. svl. around $(\overline{p}, 0)$ for \overline{x} .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Equivalences from Ampleness

(a) S as in (2) has a Lip-cont. svl. around
$$\overline{p}$$
 for \overline{x} ;

(b)
$$(h + F)^{-1}$$
 has a Lip-cont. svl. around 0 for \overline{x} ;

- (c) $(g + F)^{-1}$ has a Lip-cont. svl. around 0 for \overline{x} .
- (d) \tilde{S} has a Lip-cont. svl. around $(\overline{p}, 0)$ for \overline{x} .

Proof.

- (b) \implies (a), (d) with Robinson Theorem (2B.5)
- $(b) \Leftrightarrow (c)$ from the Extended Inverse Function Theorem (2B.11)
- $(d) \implies (a)$ by setting the supplementary parameters to zero
- (a) \implies (b) by next Lemma (2C.1) and Contraction Mapping Principle applied to ψ

Local Selection from Ampleness

Lemma (2C.1)

Let $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^m$ be an ample parametrization of (1) at \overline{x} . If f has a strict first-order approximation h wrt. x at $(\overline{p}, \overline{x})$.

Then:

$$\Psi: (x,y) \mapsto \{p|e(p,x)+y=0\}$$

with e(p, x) = f(p, x) - h(x) has a local selection ψ around $(\overline{x}, 0)$ for \overline{p} . Furthermore:

$$\widehat{\mathit{lip}}_x(\psi;(\overline{x},0))=0$$

and

$$\widehat{lip}_{y}(\psi;(\overline{x},0))<\infty.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Parametric Robustness

Theorem (2C.3)

Let g in (1) be strictly differentiable and h the linearisation of g:

 $h(x) = g(\overline{x}) + \nabla g(\overline{x})(x - \overline{x}).$

Then the following statements are equivalent:

- $(h + F)^{-1}$ has a Lip-cont. svl. around 0 for \overline{x} ;
- For every parametrization f of (1) that is strictly differentiable at (x, p), S as in (2) has a Lip-cont. svl. around p for x.

イロト 不得下 イヨト イヨト

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is **(strictly) semidifferentiable** at \overline{x} , if it has a (strict) first-order approximation h at \overline{x} of the form

$$h(x) = f(\overline{x}) + \phi(x - \overline{x}),$$

where ϕ is continuous and positive homogeneous.

Definition

A function f is (one-sided) directionally differentiable, if

$$f'(\overline{x}; w) := \lim_{t \searrow 0} \frac{f(\overline{x} + tw) - f(\overline{x})}{t}$$

exists for all $w \in \mathbb{R}^n$.

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is **(strictly) semidifferentiable** at \overline{x} , if it has a (strict) first-order approximation h at \overline{x} of the form

$$h(x) = f(\overline{x}) + \phi(x - \overline{x}),$$

where ϕ is continuous and positive homogeneous.

Definition

A function f is semidifferentiable, if and only if

$$Df(\overline{x})(w) := \lim_{\substack{t \searrow 0 \\ w' \to w}} \frac{f(\overline{x} + tw') - f(\overline{x})}{t}$$

exists for all $w \in \mathbb{R}^n$.

Lemma

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is semidifferentiable at \overline{x} , then it is directionally differentiable at \overline{x} and

$$Df(\overline{x})(w) = f'(\overline{x}; w)$$

If $lip(f; \overline{x}) < \infty$, then directional differentiability implies semidifferentiability.

A D > A B > A B >

Properties

- the semiderivative $Df(\overline{x}) := \phi$ is unique
- $\bullet \ \textit{semidifferentiable} \ \Longrightarrow$
 - directionally diff. (equivalent if $lip(f; \overline{x}) < \infty$)
 - $Df(\overline{x})(w) = f'(\overline{x}; w)$
 - $\mathit{clm}(f; \overline{x}) < \infty \ (\textit{strictly} \implies \mathit{lip} < \infty)$
- chain rule: if
 - f is (strictly) semidiff. at \overline{x}
 - g is Lip-cont. and semidiff. (strictly diff.) at $\overline{y} := f(\overline{x})$

then $g \circ f$ is (strictly) semidiff. at \overline{x} and $D(g \circ f)(\overline{x}) = Dg(\overline{y}) \circ Df(\overline{x})$

(日) (同) (日) (日)

Examples

- $f(x) = e^{|x|}$: not diff. at 0, but strictly semidiff. with $Df(0) : w \mapsto |w|$
- f(x, y) = min{x, y}: not diff. along x = y, but strictly semidiff. with Df(x, x)(w₁, w₂) = min{w₁, w₂}

イロト 不得下 イヨト イヨト

Implicit Function Theorem Utilizing Semiderivatives

Theorem (2D.6)

Let $\overline{x} \in S(\overline{p})$ for $S : p \mapsto \{x | f(p, x) + F(x) \ni 0\}$, f be strictly semidifferentiable at $(\overline{p}, \overline{x})$ and assume that G^{-1} of the mapping

$$G(x) = f(\overline{p}, \overline{x}) + D_x f(\overline{p}, \overline{x})(x - \overline{x}) + F(x), \quad 0 \in G(\overline{x})$$

has a Lip-cont. svl. σ around 0 for \overline{x} , which is semidifferentiable at 0. Then:

S has a Lip-cont. svl. s around \overline{p} for \overline{x} , which is semidiff. at \overline{p} and

$$Ds(\overline{p}) = D\sigma(0) \circ (-D_p f(\overline{p}, \overline{x}))$$

Implicit Function Theorem Utilizing Semiderivatives

Proof.

- strictly semidiff. \implies *lip*(*f*) < ∞ \implies \exists Lip-cont. svl. s (2B.5, 2B.9b) and
- $r(p) := f(\overline{x}, \overline{p}) + D_p f(\overline{p}, \overline{x})(p \overline{p})$ is a strict 1st-order approx.

•
$$s(\overline{p}) = \sigma(0) = \overline{x}$$

• to show: $s(\overline{p}) + Ds(\overline{p})(p - \overline{p})$ is a 1st-order approx. to s. (clm(e) = 0)

•
$$|s(p) - s(\overline{p}) - (D\sigma(0) \circ (-D_p f(\overline{p}, \overline{x})))(p - \overline{p})| = o(|p - \overline{p}|) \implies clm = 0$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Piecewise Smooth Functions

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is **piecewise smooth** on an open set O, if it is continuous on O and for each $x \in O$ there is a finite collection $\{f_i\}_{i \in \mathcal{I}}$ of C^1 -functions defined on a neighbourhood of x such that

$$f(y) \in \{f_i(y) | i \in \mathcal{I}\}, \text{when } |y - x| < \epsilon$$

for some ϵ .

Definition

 $\mathcal{I}(x) := \{i \in \mathcal{I} | f(x) = f_i(x)\}$ is called a **local representation** of f at x.

It is called **minimal**, if no subset of $\mathcal{I}(x)$ is a local representation.

Daniel Jodlbauer

イロト イポト イヨト イヨ

Piecewise Smooth Functions

Lemma (Decomposition)

Let f be piecewise smooth with minimal representation at \overline{x} .

Then for each $i \in \mathcal{I}(\overline{x})$ there exists an open set O_i , such that $\overline{x} \in \overline{O_i}$ and $f(x) = f_i(x)$ on O_i .

Lemma (Semidifferentiablity)

If f is piecewise smooth, then f is semidifferentiable.

Moreover, $Df(\overline{x})$ is piecewise smooth. If $\mathcal{I}(\overline{x})$ is minimal, then the local representation of $Df(\overline{x})$ is given by $\{Df_i(\overline{x})\}_{i \in \mathcal{I}(\overline{x})}$

Applications in Optimization

Example (Piecewise Smoothness of Special Projection Mappings) Let $C := \{x \in \mathbb{R}^n | g_i(x) \le 0, i = 1, ..., m\}$ with g_i convex C^2 -functions and $\overline{x} \in C$ such, that for the active constraints (i.e. $g_i(\overline{x}) = 0$) it holds that $\nabla g_i(\overline{x})$

are linearly independent.

Then the projection mapping P_C is piecewise smooth in a neighbourhood of \overline{x} .

Example (Projection Mapping)

Let $C := \{x \in \mathbb{R}^n | Ax = b \in \mathbb{R}^m\}$. If the rows of A are linearly independent, then

$$P_{C}(x) = (I - A^{T}(AA^{T})^{-1}A)x + A^{T}(AA^{T})^{-1}b$$

イロト イポト イヨト イヨト