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Robinson’s Implicit Function Theorem

Robinson Theorem Extended Beyond Differentiability

Theorem (2B.5 Robinson Implicit Function Theorem)

If

1 f (., x) is continuous at p and h a strict estimator of f wrt. x unif. in p at

(p, x) with constant µ;

2 the inverse G−1 of G = h + F , 0 ∈ G (x) has a Lip-cont. svl. σ around 0 with

lip(σ; 0) ≤ κ and κµ < 1.

then S(p) = {x |f (p, x) + F (x) 3 0} has a svl. s around p for x , which is

continuous at p and for every ε > 0, there is a neighbourhood Q of p such that

|s(p′)− s(p)| ≤ κ+ ε

1− κµ
|f (p′, s(p))− f (p, s(p))| ∀p′, p ∈ Q
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Robinson’s Implicit Function Theorem

Extended Implicit Function Theorem with First-Order

Approximations

Theorem (2B.9)

Let the assumptions of Robinson Theorem hold for µ = 0, i.e.:

1 f (., x) is continuous at p and h a strict first-order approximation of f wrt.

x at (p, x)

2 the inverse G−1 of G = h + F , 0 ∈ G (x) has a Lip-cont. svl. σ around 0.

Then we additionally get:
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Robinson’s Implicit Function Theorem

(a) If clmp(f ; (p, x)) <∞ then s is calm at p with

clm(s; p) ≤ lip(σ; 0) · clmp(f ; (p; x)).

(b) If l̂ipp(f ; (p, x)) <∞ then s is Lip-cont. near p with

lip(s; p) ≤ lip(σ; 0) · l̂ipp(f ; (p; x)).

(c) If, along with (a), f has a first-order approximation r wrt. p at (p, x), then

η(p) = σ(−r(p) + f (p, x)), p ∈ Q,

is a first-order approximation at p to s.

(d) If, in addition to all previous conditions, σ is affine (σ(y) = x + Ay) and r is

strict, then η is strict and

η(p) = x + A(−r(p) + f (p, x)), p ∈ Q.
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Robinson’s Implicit Function Theorem

(a) If clmp(f ; (p, x)) <∞ then clm(s; p) ≤ lip(σ; 0) · clmp(f ; (p; x)).

Proof.

2B.5 with p := p, κ = lip(σ; 0) for any ε > 0:

|s(p′)− s(p)| ≤ κ+ ε

1− κµ |f (p
′, s(p))− f (p, s(p))| ∀p′ ∈ Q

1
|p−p|

limsup

(b) analogously to (a)
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Robinson’s Implicit Function Theorem

(c) If clmp(f ; (p, x)) <∞ and f has a first-order approx. r wrt. p, then

η(p) = σ(−r(p) + f (p, x)) is a first-order approx. of s

Proof.

To show: |s(p)− η(p)| = o(|p − p|).

1 s(p) = σ(−e(p, s(p))) for e(p, x) = f (p, x)− h(x) and

x = s(p) = σ(0) = η(p)

Make Q and U (from 2B.5) smaller, such that for all x ∈ U, p ∈ Q and any ε > 0:

2 −e(p, x) and −r(p) + f (p, x) are close enough to zero, such that σ is

Lip-cont.

3 |e(p, x)− e(p, x)| ≤ ε|x − x |

4 |f (p, x)− r(p)| ≤ ε|p − p|

5 |s(p)− s(p)| ≤ λ|p − p|, λ > clm(s; p)
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Robinson’s Implicit Function Theorem

Utilization of Strict Differentiability

Corollary

Suppose that f is strictly differentiable at (p, x) and that G−1 of

G (x) = f (p, x) +∇x f (p, x)(x − x) + F (x) = h(x) + F (x)

has a Lip-cont. svl. σ around 0.

Then:

s has a first-order approximation at p given by η(p) = σ(−∇pf (p, x)(p − p))

If F ≡ 0, then η is strict and

η(p) = x −∇x f (p, x)−1∇pf (p, x)(p − p).

Conclusion: classical implicit function theorem covered by Robinson theorem.
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Robinson’s Implicit Function Theorem

Extended Inverse Function Theorem with First-Order

Approximations

Theorem (2B.11)

Let f (p, x) = g(x)− p for some function g : Rn → Rm and h a strict first-order

approximation to g at x .

Then: (g + F )−1 has a Lip-cont. svl. s around p, if and only if (h + F )−1 has

such a localization σ.

Moreover, σ is a first-order approximation of s at p, and

lip(s; p) = lip(σ; p).
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Parametrizations

Ample parametrizations

Consider the equation

0 ∈ g(x) + F (x). (1)

Then a function f : Rd × Rn → Rm is called

a parametrization, if f (p, x) ≡ g(x) for a particular p and it is

ample at x , if ∇pf (p, x) has full rank (rk = m).

associated solution mapping

S : p 7→ {x |f (p, x) + F (x) 3 0} (2)

supplementary parameters to ensure rank condition

Daniel Jodlbauer Extended Robinson, parametrizations and semiderivatives December 1, 2015 10 / 24



Parametrizations

Equivalences from Ampleness

Theorem (2C.2)

Let f be an ample parametrization at (p, x) of g as before and let h a be strict

first-order approximation of f wrt. x unif. in p at (p, x)

Then the following statements are equivalent:

(a) S as in (2) has a Lip-cont. svl. around p for x ;

(b) (h + F )−1 has a Lip-cont. svl. around 0 for x ;

(c) (g + F )−1 has a Lip-cont. svl. around 0 for x .

(d) S̃ has a Lip-cont. svl. around (p, 0) for x .
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Parametrizations

Equivalences from Ampleness

(a) S as in (2) has a Lip-cont. svl. around p for x ;

(b) (h + F )−1 has a Lip-cont. svl. around 0 for x ;

(c) (g + F )−1 has a Lip-cont. svl. around 0 for x .

(d) S̃ has a Lip-cont. svl. around (p, 0) for x .

Proof.

(b) =⇒ (a), (d) with Robinson Theorem (2B.5)

(b)⇔ (c) from the Extended Inverse Function Theorem (2B.11)

(d) =⇒ (a) by setting the supplementary parameters to zero

(a) =⇒ (b) by next Lemma (2C.1) and Contraction Mapping Principle

applied to ψ
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Parametrizations

Local Selection from Ampleness

Lemma (2C.1)

Let f : Rd × Rn → Rm be an ample parametrization of (1) at x . If f has a strict

first-order approximation h wrt. x at (p, x).

Then:

Ψ : (x , y) 7→ {p|e(p, x) + y = 0}

with e(p, x) = f (p, x)− h(x) has a local selection ψ around (x , 0) for p.

Furthermore:

l̂ipx(ψ; (x , 0)) = 0

and

l̂ipy (ψ; (x , 0)) <∞.
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Parametrizations

Parametric Robustness

Theorem (2C.3)

Let g in (1) be strictly differentiable and h the linearisation of g:

h(x) = g(x) +∇g(x)(x − x).

Then the following statements are equivalent:

1 (h + F )−1 has a Lip-cont. svl. around 0 for x ;

2 For every parametrization f of (1) that is strictly differentiable at (x , p), S as

in (2) has a Lip-cont. svl. around p for x .
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Semiderivatives

Semiderivatives

Definition

A function f : Rn → Rm is (strictly) semidifferentiable at x , if it has a (strict)

first-order approximation h at x of the form

h(x) = f (x) + φ(x − x),

where φ is continuous and positive homogeneous.

Definition

A function f is (one-sided) directionally differentiable, if

f ′(x ;w) := lim
t↘0

f (x + tw)− f (x)

t

exists for all w ∈ Rn.
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Semiderivatives

Semiderivatives

Definition

A function f : Rn → Rm is (strictly) semidifferentiable at x , if it has a (strict)

first-order approximation h at x of the form

h(x) = f (x) + φ(x − x),

where φ is continuous and positive homogeneous.

Definition

A function f is semidifferentiable, if and only if

Df (x)(w) := lim
t↘0

w ′→w

f (x + tw ′)− f (x)

t

exists for all w ∈ Rn.
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Semiderivatives

Semiderivatives

Lemma

If f : Rn → Rm is semidifferentiable at x , then it is directionally differentiable at x

and

Df (x)(w) = f ′(x ;w)

If lip(f ; x) <∞, then directional differentiability implies semidifferentiability.
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Semiderivatives

Semiderivatives

Properties

the semiderivative Df (x) := φ is unique

semidifferentiable =⇒

directionally diff. (equivalent if lip(f ; x) <∞)

Df (x)(w) = f ′(x ;w)

clm(f ; x) <∞ (strictly =⇒ lip <∞)

chain rule: if

f is (strictly) semidiff. at x

g is Lip-cont. and semidiff. (strictly diff. ) at y := f (x)

then g ◦ f is (strictly) semidiff. at x and D(g ◦ f )(x) = Dg(y) ◦ Df (x)
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Semiderivatives

Semiderivatives

Examples

f (x) = e|x|: not diff. at 0, but strictly semidiff. with Df (0) : w 7→ |w |

f (x , y) = min{x , y}: not diff. along x = y , but strictly semidiff. with

Df (x , x)(w1,w2) = min{w1,w2}
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Semiderivatives

Implicit Function Theorem Utilizing Semiderivatives

Theorem (2D.6)

Let x ∈ S(p) for S : p 7→ {x |f (p, x) + F (x) 3 0}, f be strictly semidifferentiable at

(p, x) and assume that G−1 of the mapping

G (x) = f (p, x) + Dx f (p, x)(x − x) + F (x), 0 ∈ G (x)

has a Lip-cont. svl. σ around 0 for x , which is semidifferentiable at 0.

Then:

S has a Lip-cont. svl. s around p for x , which is semidiff. at p and

Ds(p) = Dσ(0) ◦ (−Dpf (p, x))
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Semiderivatives

Implicit Function Theorem Utilizing Semiderivatives

Proof.

strictly semidiff. =⇒ lip(f ) <∞ =⇒ ∃Lip-cont. svl. s (2B.5, 2B.9b) and

r(p) := f (x , p) + Dpf (p, x)(p − p) is a strict 1st-order approx.

s(p) = σ(0) = x

to show: s(p) + Ds(p)(p − p) is a 1st-order approx. to s. (clm(e) = 0)

|s(p)− s(p)− (Dσ(0) ◦ (−Dpf (p, x)))(p − p)| = o(|p − p|) =⇒ clm = 0
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Piecewise Smooth Functions

Piecewise Smooth Functions

Definition

A function f : Rn → Rm is piecewise smooth on an open set O, if it is

continuous on O and for each x ∈ O there is a finite collection {fi}i∈I of

C 1-functions defined on a neighbourhood of x such that

f (y) ∈ {fi (y)|i ∈ I},when |y − x | < ε

for some ε.

Definition

I(x) := {i ∈ I|f (x) = fi (x)} is called a local representation of f at x.

It is called minimal, if no subset of I(x) is a local representation.
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Piecewise Smooth Functions

Piecewise Smooth Functions

Lemma (Decomposition)

Let f be piecewise smooth with minimal representation at x .

Then for each i ∈ I(x) there exists an open set Oi , such that x ∈ Oi and

f (x) = fi (x) on Oi .

Lemma (Semidifferentiablity)

If f is piecewise smooth, then f is semidifferentiable.

Moreover, Df (x) is piecewise smooth. If I(x) is minimal, then the local

representation of Df (x) is given by {Dfi (x)}i∈I(x)
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Piecewise Smooth Functions

Applications in Optimization

Example (Piecewise Smoothness of Special Projection Mappings)

Let C := {x ∈ Rn|gi (x) ≤ 0, i = 1, . . . ,m} with gi convex C 2-functions and

x ∈ C such, that for the active constraints (i.e. gi (x) = 0) it holds that ∇gi (x)

are linearly independent.

Then the projection mapping PC is piecewise smooth in a neighbourhood of x .

Example (Projection Mapping)

Let C := {x ∈ Rn|Ax = b ∈ Rm}. If the rows of A are linearly independent, then

PC (x) = (I − AT (AAT )−1A)x + AT (AAT )−1b
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