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Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Previously in our seminar...

We study parametrized generalized equations of the form
f(p,x)+F(x)>30

where f : RY x R” — R” and F : R” = R".

Consider properties of solution mapping S : R? = R”,

S:p— {x|f(p,x)+ F(x) > 0}.

Special case: Let C C R" convex, closed. The variational inequality
x€C, (f(p,x),x —x)>0vx' €C
is equivalent to the generalized equation

f(p,x)+ Nc(x)30

3/19



Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Previously in our seminar...

Theorem 2B.1

Theorem (Robinson Implicit Function Theorem)

For the solution mapping S to a parameterized variational inequality,
consider a pair (p, X) with X € S(p). Assume that:

o f(p.x) is differentiable with respect to x in a neighbourhood of the
point (p, X), and both f(p,x) and Vf(p, x) depend continuously on
(p, x) in this neighbourhood;

the inverse G~ of the set valued mapping G : R” = R" defined by
G(x) = f(p,X) + Vif(p,X)(x — X) + Nc(x), with G(x) >0,
has a Lipschitz continuous single-valued localization o around 0 for X
with

lip(c;0) < K.
Then S has a single-valued localization s around p for X which is

continuous at p, and moreover for every € > 0 there is a
neighbourhood Q of p such that

|s(p') = s(p)| < (1 +€) |F(p', 5(P)) — F(p,s(p))| forall p',p € Q.

Wolfgang Stockinger November 24, 2015 17 / 24



Recap Polyhedral Convex Sets

Previously in our seminar...

Several Extensions:
@ Theorem 2B.5:

F general set-valued mapping
f not necessarily differentiable
e Corollary 2B.10:

F general set-valued mapping
f strictly differentiable

Today:
e F = Nc (variational inequalities)
o f strictly differentiable

Localization under Polyhedral Convexity

5/19



Recap
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Solution Mappings for Parametrized Variational Inequalities

Theorem (2E.1)

For a variational inequaility and its solution mapping, let p and X be such that
X € S(p). Assume that

(a) f is strictly differentiable at (p,X);
(b) the inverse G~ of the mapping

G(x) = f(p,X) + V«f(p, X)(x — X) + Nc(x), with G(X) > 0,

has a Lipschitz continuous single-valued localization o around 0 for x.

Then S has a Lipschitz continuous single-valued localization s around p for x
with

lin(s; B) < lip(c0) - |Vf (B, %),
and this localization s has a first-order approximation n at p given by

n(p) = o(=V,f(pP,X)(p — P))-

6
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Solution Mappings for Parametrized Variational Inequalities

Theorem (2E.1 (cont'd))
Moreover, under the ample parametrization condition
rankV,f(p,x) = n,

the existence of a Lipschitz continuous single-valued localization s of S around
p for p not only follows from, but also necessitates the existence of a
localization o of G~ having the properties described.

Proof.
Application of Corollary 2B.10 and Theorem 2C.2. O

Goal for today:

Understand better the circumstances in which existence of s.v.l. o of G™*
around 0 for X as assumed in (b) of Theorem 2E.1 is assured for special case
where C polyhedral, convex

7/19



Let C C R" convex, x € C.
Nc(x) = {v|{v,x" — x) < 0Vx" € C} (closed, convex)

Let K be a closed convex cone in R”. Then

K* ={y|{y,x) <0Vx € K}

is the polar cone to K. The polar cone K* is closed and convex. In particular

y € Nx(x) <= x € Nx=(y) <= x € K,y € K", (x,y) =0
_ e Lk K K K
Te(x) = {v|v = lim—(x* — x) for some x“ — x,x“ € C, 7" \, 0}
T
We have the relations

Te(x) = Ne(x)*

and Nc(x) =

<TLE(>X)*@> «CE>» «E>»
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Recap: Differentiability

Definition (Strict Differentiability)

A function f : R” — R™ is strictly differentiable at point X if there is a linear
mapping A : R"” — R™ such that

lip(e;X) = 0 for e(x) = f(x) — [f(X) + A(x — X)].

Definition ((strict) semidifferentiablility)

A function f : R” — R" is (strictly) semi-differentiable at point X if it has a
(strict) first-order approximation h at X of the form

h(x) = f(x) + ¢(x — %),

where ¢ is continuous and positive homogeneous.
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Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Polyhedral Convex Sets

Investigate existence of Lipschitz continuous s.v.l. o around 0 for X of G™*
where

G(x) = f(p,X) + V«f(p,X)(x — X) + Nc(x), with G(X) 5%

where X € S(p). We analyze the local geometry of gph N¢ for the special case
of polyhedral convex sets C.

Definition
A set C in R" is said to be polyhedral convex when it can be expressed as the
intersection of finitely many closed half-spaces

Properties of polyhedral convex sets C:
o C={x|(bi,x) <ajfori=1,...,m}
o C is closed

e ai=0Vi=1,...,m= Ciscone
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vectors by, . .., bm such that

A set K C R" is a polyhedral convex cone if and only if there is a collection of

K ={yibi + -+ ymbmly; > 0 fori=1,...,m}

«O0> «F>» «=)r» «=)»
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Polyhedral Convex Sets

Theorem (2E.3: Variational Geometry of Polyhedral Convex Sets)

Let C = {x|(bi,x) < @j fori =1,...,m} be a polyhedral convex set. Let
x € C and I(x) = {i|(bi, x) = «;}, this being the set of constraints that are
active at x. Then the tangent and normal cone to C at x are polyhedral
convex, with the tangent cone having the representation

Te(x) = {w|(bi,w) <0 fori € I(x)}

and the normal cone having the representation

Nc(x) = {v

Furthermore, the tangent cone has the properties that

V:Zy,-b; with y; > 0 fori € I(x),yi =0 fori§ZI(x)}.

i=1

W N[C —x] = WnN Tc(x) for some neighborhood W of O

and

Tc(x) D T(X) for all x in some neighborhood U of X.
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for v is

For a convex set C, any x € C and any v € N¢(x), the critical cone to C at x

Ke(x,v) ={w € Tc(x)|w L v}.
Note: C polyhedral implies Kc(x, v) polyhedral

«O0)>» «F» «=)» 4«
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Reduction Lemma

Lemma (Reduction Lemma)

Let C be a polyhedral convex set in R", and let
xeC, veNc(x), K=Kcx,V).

The graphical geometry of the normal cone mapping Nc¢ around (X, V) reduces
then to the graphical geometry of the normal cone mapping Nk around (0, 0),
in the sense that

O N [gph Nc — (x,v)] = O N gph Nk for some neighborhood O of (0,0).
In other words, one has

V+u € Ne(x+ w) < u e Nx(w) for (w, u) sufficiently near to (0, 0).

Proof:
Blackboard.

14
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The smallest linear subspace that includes the critical cone Kc¢(x, v) will be

denoted by K (x, v), whereas the largest linear subspace that is included in

Kc(x, v) will be denoted by K- (x, v), the formulas being
Ké—(X, V) = KC(Xa V) - KC(X> V) = {W - W’|W7 w' e KC(X> V)}7

Ke (x,v) = Ke(x, v) N [—Kce(x, v)] = {w € Kc(x, v)| —w € Kc(x,v)}.

«O0> «F>» «=)r» «=)»
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Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Affine-Polyhedral Variational Inequalities

Theorem (Affine-Polyhedral Variational Inequalities)

For an affine function x — a + Ax from R" into R", and a polyhedral convex
set C C R", consider the variational inequaility

a+ Ax + N¢(x) 5 0.

Let X be a solution and let v = —a — AX, so that v € N¢(X), and let
K = Kc(x, V) be the associated critical cone. Then for the mappings

G(x) = a+ Ax + Nc(x) with G(X) > 0,
Go(w) = Aw + Nk (w) with Go(0) 3 0,

the following properties are equivalent:
(a) G™! has a Lipschitz continuous single-valued localization o around 0 for X;
(b) G, ! is a single-valued mapping with all of R" as its domain,

in which case G, ! is necessarily Lipschitz continuous globally and the function
o(v) = X+ Gy *(v) furnishes the localization in (a). Moreover, in terms of
critical subspaces K™ = K} (x,V) and K~ = KZ (x, V), the following condition
is sufficient for (a) and (b) to hold:

weK", Aw LK, (w,Aw)<0=—= w =0. (20) 16/19



Examples

Pk is the projection onto K.

@ When the critical cone K is a subspace, the condition in (20) reduces to
the nonsingularity of the linear transformation K 3 w — Px(Aw), where
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Recap Polyhedral Convex Sets

Example

Examples

@ When the critical cone K is a subspace, the condition in (20) reduces to
the nonsingularity of the linear transformation K 3 w — Px(Aw), where
Pk is the projection onto K.

@ When the critical cone K is pointed, in the sense that K N (—K) = {0},

the condition in (20) reduces to the requirement that (w, Aw) > 0 for all
nonzero w € K™

Localization under Polyhedral Convexity
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Example

Examples

@ When the critical cone K is a subspace, the condition in (20) reduces to
the nonsingularity of the linear transformation K 3 w — Px(Aw), where
Pk is the projection onto K.

@ When the critical cone K is pointed, in the sense that K N (—K) = {0},
the condition in (20) reduces to the requirement that (w, Aw) > 0 for all
nonzero w € K™

@ Condition (20) always holds when A is the identity matrix.
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Localization Criterion under Polyhedral Convexity

Theorem (Localization Criterion under Polyhedral Convexity)

For a variational inequality and its solution mapping under the assumption that
C is polyhedral convex and f is strictly differentiable at (p,X), with X € S(p),

let
A=V.f(p,x) and K = Kc¢(x,V) forv f(p, X).

Suppose that for each u € R" there is a unique solution w = 5(u) to the

auxiliary variational inequality Aw — u + Nk(w) 2 0, this being equivalent to
saying that s, )
5= (A4 Nk)  is everywhere single-valued, (29)

in which case the mapping s is Lipschitz continuous globally. (A sufficient
condition for this assumption to hold is the property in (20) with respect to the
critical subspaces K™ = K} (x,V) and K~ = K (x,V). )

Then S has a Lipschitz continuous single-valued localization s around p for X
which is semidifferentiable with

lip(s;P) < lip(s; 0)[Vof (P, X)|,  Ds(p)(q) = 5(=V,f(p,X)q)-

Moreover, under the ample parametrization condition, rankV ,f(p,X) = n,
condition (29) is not only sufficient, but also necessary for a Lipschitz
continuous single-valued localization of S around p for x.




Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Local Behavior of Critical Cones and Subspaces

Theorem (Local Behavior of Critical Cones and Subspaces)

Let C C R" be a polyhedral convex set, and let v € N¢(x). Then the following

properties hold:

(a) Ke(x,v) C KE(x,V) for all (x,v) € gphNc¢ in some neighborhood of
xv);

(b) Kc(x,v) = K{(x,V) for some (x,v) € gphNc in each neighborhood of
(x,v).

Thank you for your attention!
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