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Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Previously in our seminar...

We study parametrized generalized equations of the form

f (p, x) + F (x) 3 0

where f : Rd × Rn → Rn and F : Rn ⇒ Rm.

Consider properties of solution mapping S : Rd ⇒ Rn,

S : p 7→ {x |f (p, x) + F (x) 3 0}.

Special case: Let C ⊂ Rn convex, closed. The variational inequality

x ∈ C , 〈f (p, x), x ′ − x〉 ≥ 0 ∀x ′ ∈ C

is equivalent to the generalized equation

f (p, x) + NC (x) 3 0
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Previously in our seminar...

Theorem 2B.1
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Previously in our seminar...

Several Extensions:

Theorem 2B.5:
F general set-valued mapping
f not necessarily differentiable

Corollary 2B.10:
F general set-valued mapping
f strictly differentiable

Today:

F = NC (variational inequalities)

f strictly differentiable
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Solution Mappings for Parametrized Variational Inequalities

Theorem (2E.1)

For a variational inequaility and its solution mapping, let p and x be such that
x ∈ S(p). Assume that

(a) f is strictly differentiable at (p, x);

(b) the inverse G−1 of the mapping

G(x) = f (p, x) +∇x f (p, x)(x − x) + NC (x), with G(x) 3 0,

has a Lipschitz continuous single-valued localization σ around 0 for x.

Then S has a Lipschitz continuous single-valued localization s around p for x
with

lip(s; p) ≤ lip(σ; 0) · |∇pf (p, x)|,

and this localization s has a first-order approximation η at p given by

η(p) = σ(−∇pf (p, x)(p − p)).
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Solution Mappings for Parametrized Variational Inequalities

Theorem (2E.1 (cont’d))

Moreover, under the ample parametrization condition

rank∇pf (p, x) = n,

the existence of a Lipschitz continuous single-valued localization s of S around
p for p not only follows from, but also necessitates the existence of a
localization σ of G−1 having the properties described.

Proof.

Application of Corollary 2B.10 and Theorem 2C.2.

Goal for today:

Understand better the circumstances in which existence of s.v.l. σ of G−1

around 0 for x as assumed in (b) of Theorem 2E.1 is assured for special case
where C polyhedral, convex
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Recap: Cones

Let C ⊂ Rn convex, x ∈ C .

Definition (Normal Cone)

NC (x) = {v |〈v , x ′ − x〉 ≤ 0 ∀x ′ ∈ C} (closed, convex)

Definition (Polar Cone)

Let K be a closed convex cone in Rn. Then

K∗ = {y |〈y , x〉 ≤ 0 ∀x ∈ K}

is the polar cone to K . The polar cone K∗ is closed and convex. In particular

y ∈ NK (x)⇐⇒ x ∈ NK∗(y)⇐⇒ x ∈ K , y ∈ K∗, 〈x , y〉 = 0

Definition (Tangent Cone)

TC (x) = {v |v = lim
1

τ k
(xk − x) for some xk → x , xk ∈ C , τ k ↘ 0}

We have the relations

TC (x) = NC (x)∗ and NC (x) = TC (x)∗
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Recap: Differentiability

Definition (Strict Differentiability)

A function f : Rn → Rm is strictly differentiable at point x if there is a linear
mapping A : Rn → Rm such that

lip(e; x) = 0 for e(x) = f (x)− [f (x) + A(x − x)].

Definition ((strict) semidifferentiablility)

A function f : Rn → Rm is (strictly) semi-differentiable at point x if it has a
(strict) first-order approximation h at x of the form

h(x) = f (x) + φ(x − x),

where φ is continuous and positive homogeneous.
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Polyhedral Convex Sets

Investigate existence of Lipschitz continuous s.v.l. σ around 0 for x of G−1

where

G(x) = f (p, x) +∇x f (p, x)(x − x) + NC (x), with G(x) 3 x

where x ∈ S(p). We analyze the local geometry of gph NC for the special case
of polyhedral convex sets C .

Definition

A set C in Rn is said to be polyhedral convex when it can be expressed as the
intersection of finitely many closed half-spaces

Properties of polyhedral convex sets C :

C = {x |〈bi , x〉 ≤ αi for i = 1, . . . ,m}
C is closed

αi = 0 ∀i = 1, . . . ,m⇒ C is cone
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Polyhedral Convex Sets

Theorem (2E.2: Minkowski-Weyl Theorem)

A set K ⊂ Rn is a polyhedral convex cone if and only if there is a collection of
vectors b1, . . . , bm such that

K = {y1b1 + · · ·+ ymbm|yi ≥ 0 for i = 1, . . . ,m}.
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Polyhedral Convex Sets

Theorem (2E.3: Variational Geometry of Polyhedral Convex Sets)

Let C = {x |〈bi , x〉 ≤ αi for i = 1, . . . ,m} be a polyhedral convex set. Let
x ∈ C and I (x) = {i |〈bi , x〉 = αi}, this being the set of constraints that are
active at x. Then the tangent and normal cone to C at x are polyhedral
convex, with the tangent cone having the representation

TC (x) = {w |〈bi ,w〉 ≤ 0 for i ∈ I (x)}

and the normal cone having the representation

NC (x) =

{
v

∣∣∣∣∣v =
m∑
i=1

yibi with yi ≥ 0 for i ∈ I (x), yi = 0 for i 6∈ I (x)

}
.

Furthermore, the tangent cone has the properties that

W ∩ [C − x ] = W ∩ TC (x) for some neighborhood W of 0

and

TC (x) ⊃ T (x) for all x in some neighborhood U of x .
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Critical Cone

Definition (Critical Cone)

For a convex set C , any x ∈ C and any v ∈ NC (x), the critical cone to C at x
for v is

KC (x , v) = {w ∈ TC (x)|w ⊥ v} .

Note: C polyhedral implies KC (x , v) polyhedral
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Reduction Lemma

Lemma (Reduction Lemma)

Let C be a polyhedral convex set in Rn, and let

x ∈ C , v ∈ NC (x), K = KC (x , v).

The graphical geometry of the normal cone mapping NC around (x , v) reduces
then to the graphical geometry of the normal cone mapping NK around (0, 0),
in the sense that

O ∩ [gph NC − (x , v)] = O ∩ gph NK for some neighborhood O of (0, 0).

In other words, one has

v + u ∈ NC (x + w)⇔ u ∈ NK (w) for (w , u) sufficiently near to (0, 0).

Proof:
Blackboard.

14 / 19



Recap Polyhedral Convex Sets Localization under Polyhedral Convexity

Critical Subspaces

Definition (Critical Subspaces)

The smallest linear subspace that includes the critical cone KC (x , v) will be
denoted by K+

C (x , v), whereas the largest linear subspace that is included in
KC (x , v) will be denoted by K−C (x , v), the formulas being

K+
C (x , v) = KC (x , v)− KC (x , v) = {w − w ′|w ,w ′ ∈ KC (x , v)},

K−C (x , v) = KC (x , v) ∩ [−KC (x , v)] = {w ∈ KC (x , v)| − w ∈ KC (x , v)}.
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Affine-Polyhedral Variational Inequalities

Theorem (Affine-Polyhedral Variational Inequalities)

For an affine function x 7→ a + Ax from Rn into Rn, and a polyhedral convex
set C ⊂ Rn, consider the variational inequaility

a + Ax + NC (x) 3 0.

Let x be a solution and let v = −a− Ax, so that v ∈ NC (x), and let
K = KC (x , v) be the associated critical cone. Then for the mappings

G(x) = a + Ax + NC (x) with G(x) 3 0,

G0(w) = Aw + NK (w) with G0(0) 3 0,

the following properties are equivalent:

(a) G−1 has a Lipschitz continuous single-valued localization σ around 0 for x;

(b) G−1
0 is a single-valued mapping with all of Rn as its domain,

in which case G−1
0 is necessarily Lipschitz continuous globally and the function

σ(v) = x + G−1
0 (v) furnishes the localization in (a). Moreover, in terms of

critical subspaces K+ = K+
C (x , v) and K− = K−C (x , v), the following condition

is sufficient for (a) and (b) to hold:

w ∈ K+, Aw ⊥ K−, 〈w ,Aw〉 ≤ 0 =⇒ w = 0. (20) 16 / 19
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Example

Examples

1 When the critical cone K is a subspace, the condition in (20) reduces to
the nonsingularity of the linear transformation K 3 w 7→ PK (Aw), where
PK is the projection onto K .

2 When the critical cone K is pointed, in the sense that K ∩ (−K) = {0},
the condition in (20) reduces to the requirement that 〈w ,Aw〉 > 0 for all
nonzero w ∈ K+

3 Condition (20) always holds when A is the identity matrix.
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Localization Criterion under Polyhedral Convexity

Theorem (Localization Criterion under Polyhedral Convexity)

For a variational inequality and its solution mapping under the assumption that
C is polyhedral convex and f is strictly differentiable at (p, x), with x ∈ S(p),
let

A = ∇x f (p, x) and K = KC (x , v) for v = −f (p, x).

Suppose that for each u ∈ Rn there is a unique solution w = s(u) to the
auxiliary variational inequality Aw − u + NK (w) 3 0, this being equivalent to
saying that

s = (A + NK )−1 is everywhere single-valued, (29)

in which case the mapping s is Lipschitz continuous globally. (A sufficient
condition for this assumption to hold is the property in (20) with respect to the
critical subspaces K+ = K+

C (x , v) and K− = K−C (x , v). )
Then S has a Lipschitz continuous single-valued localization s around p for x
which is semidifferentiable with

lip(s; p) ≤ lip(s; 0)|∇pf (p, x)|, Ds(p)(q) = s(−∇pf (p, x)q).

Moreover, under the ample parametrization condition, rank∇pf (p, x) = n,
condition (29) is not only sufficient, but also necessary for a Lipschitz
continuous single-valued localization of S around p for x.
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Local Behavior of Critical Cones and Subspaces

Theorem (Local Behavior of Critical Cones and Subspaces)

Let C ⊂ Rn be a polyhedral convex set, and let v ∈ NC (x). Then the following
properties hold:

(a) KC (x , v) ⊂ K+
C (x , v) for all (x , v) ∈ gphNC in some neighborhood of

(x , v);

(b) KC (x , v) = K+
C (x , v) for some (x , v) ∈ gphNC in each neighborhood of

(x , v).

Thank you for your attention!
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