# Variational Inequalities with Polyhedral Convexity

Peter Gangl

## Seminar on Variational Analysis WS2015/16

December 15, 2015







Der Wissenschaftsfonds.

イロト イヨト イヨト イヨト 三日

1/19





2 Polyhedral Convex Sets



Icoalization under Polyhedral Convexity



## Outline



2 Polyhedral Convex Sets



3 Localization under Polyhedral Convexity



Previously in our seminar...

We study parametrized generalized equations of the form

# $f(p,x)+F(x) \ni 0$

where  $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$  and  $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ .

Consider properties of solution mapping  $S : \mathbb{R}^d \rightrightarrows \mathbb{R}^n$ ,

 $S: p \mapsto \{x | f(p, x) + F(x) \ni 0\}.$ 

Special case: Let  $C \subset \mathbb{R}^n$  convex, closed. The variational inequality

$$x \in C$$
,  $\langle f(p,x), x'-x \rangle \ge 0 \ \forall x' \in C$ 

is equivalent to the generalized equation

 $f(p,x)+N_C(x)\ni 0$ 

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 3/19)

## Previously in our seminar...



・ロト・「聞ト・「王ト・王」 うへで

5/19

## Previously in our seminar...

## Several Extensions:

- Theorem 2B.5:
  - F general set-valued mapping
  - f not necessarily differentiable
- Corollary 2B.10:
  - *F* general set-valued mapping *f* strictly differentiable

Today:

- $F = N_C$  (variational inequalities)
- f strictly differentiable

# Solution Mappings for Parametrized Variational Inequalities

#### Theorem (2E.1)

For a variational inequality and its solution mapping, let  $\overline{p}$  and  $\overline{x}$  be such that  $\overline{x} \in S(\overline{p})$ . Assume that

- (a) f is strictly differentiable at  $(\overline{p}, \overline{x})$ ;
- (b) the inverse  $G^{-1}$  of the mapping

 $G(x) = f(\overline{p}, \overline{x}) + \nabla_x f(\overline{p}, \overline{x})(x - \overline{x}) + N_C(x), \quad \text{with } G(\overline{x}) \ni 0,$ 

has a Lipschitz continuous single-valued localization  $\sigma$  around 0 for  $\overline{x}$ . Then S has a Lipschitz continuous single-valued localization s around  $\overline{p}$  for  $\overline{x}$  with

$$lip(s; \overline{p}) \leq lip(\sigma; 0) \cdot |\nabla_p f(\overline{p}, \overline{x})|,$$

and this localization s has a first-order approximation  $\eta$  at  $\overline{p}$  given by

$$\eta(\boldsymbol{p}) = \sigma(-\nabla_{\boldsymbol{p}}f(\overline{\boldsymbol{p}},\overline{\boldsymbol{x}})(\boldsymbol{p}-\overline{\boldsymbol{p}})).$$

# Solution Mappings for Parametrized Variational Inequalities

Theorem (2E.1 (cont'd))

Moreover, under the ample parametrization condition

 $rank \nabla_p f(\overline{p}, \overline{x}) = n,$ 

the existence of a Lipschitz continuous single-valued localization s of S around  $\overline{p}$  for  $\overline{p}$  not only follows from, but also necessitates the existence of a localization  $\sigma$  of  $G^{-1}$  having the properties described.

## Proof.

Application of Corollary 2B.10 and Theorem 2C.2.

## Goal for today:

Understand better the circumstances in which existence of s.v.l.  $\sigma$  of  $G^{-1}$  around 0 for  $\overline{x}$  as assumed in (b) of Theorem 2E.1 is assured for special case where C polyhedral, convex

## Recap: Cones

Let  $C \subset \mathbb{R}^n$  convex,  $x \in C$ .

Definition (Normal Cone)

 $N_C(x) = \{v | \langle v, x' - x \rangle \le 0 \ \forall x' \in C\}$  (closed, convex)

Definition (Polar Cone)

Let K be a closed convex cone in  $\mathbb{R}^n$ . Then

 $K^* = \{ y | \langle y, x \rangle \le 0 \ \forall x \in K \}$ 

is the polar cone to K. The polar cone  $K^*$  is closed and convex. In particular

 $y \in N_{\mathcal{K}}(x) \Longleftrightarrow x \in N_{\mathcal{K}^*}(y) \Longleftrightarrow x \in \mathcal{K}, y \in \mathcal{K}^*, \langle x, y \rangle = 0$ 

Definition (Tangent Cone)

$${\mathcal T}_{\mathcal C}(x)=\{v|v=\limrac{1}{ au^k}(x^k-x) ext{ for some } x^k o x, x^k\in {\mathcal C}, au^k\searrow 0\}$$

We have the relations

$$T_C(x) = N_C(x)^*$$
 and  $N_C(x) = \overline{T_{\mathfrak{C}}(x)^*}$  is the set of  $\mathcal{N}_C(x)$ 

・ロト ・回ト ・ヨト ・ヨト

9/19

## Recap: Differentiability

#### Definition (Strict Differentiability)

A function  $f : \mathbb{R}^n \to \mathbb{R}^m$  is strictly differentiable at point  $\overline{x}$  if there is a linear mapping  $A : \mathbb{R}^n \to \mathbb{R}^m$  such that

$$ip(e; \overline{x}) = 0$$
 for  $e(x) = f(x) - [f(\overline{x}) + A(x - \overline{x})]$ .

## Definition ((strict) semidifferentiablility)

A function  $f : \mathbb{R}^n \to \mathbb{R}^m$  is (strictly) semi-differentiable at point  $\overline{x}$  if it has a (strict) first-order approximation h at  $\overline{x}$  of the form

$$h(x) = f(\overline{x}) + \phi(x - \overline{x}),$$

where  $\phi$  is continuous and positive homogeneous.





2 Polyhedral Convex Sets

3 Localization under Polyhedral Convexity



# Polyhedral Convex Sets

Investigate existence of Lipschitz continuous s.v.l.  $\sigma$  around 0 for  $\overline{x}$  of  $G^{-1}$  where

```
G(x) = f(\overline{p}, \overline{x}) + \nabla_x f(\overline{p}, \overline{x})(x - \overline{x}) + N_C(x), \text{ with } G(\overline{x}) \ni \overline{x}
```

where  $\overline{x} \in S(\overline{p})$ . We analyze the local geometry of  $gph N_C$  for the special case of **polyhedral convex sets** *C*.

#### Definition

A set *C* in  $\mathbb{R}^n$  is said to be **polyhedral convex** when it can be expressed as the intersection of finitely many closed half-spaces

Properties of polyhedral convex sets C:

- $C = \{x | \langle b_i, x \rangle \leq \alpha_i \text{ for } i = 1, \dots, m\}$
- C is closed
- $\alpha_i = 0 \ \forall i = 1, \dots, m \Rightarrow C$  is cone

11/19

## Polyhedral Convex Sets

#### Theorem (2E.2: Minkowski-Weyl Theorem)

A set  $K \subset \mathbb{R}^n$  is a polyhedral convex cone if and only if there is a collection of vectors  $b_1, \ldots, b_m$  such that

 $K = \{y_1b_1 + \dots + y_mb_m | y_i \ge 0 \text{ for } i = 1, \dots, m\}.$ 

## Polyhedral Convex Sets

Theorem (2E.3: Variational Geometry of Polyhedral Convex Sets)

Let  $C = \{x | \langle b_i, x \rangle \leq \alpha_i \text{ for } i = 1, ..., m\}$  be a polyhedral convex set. Let  $x \in C$  and  $I(x) = \{i | \langle b_i, x \rangle = \alpha_i\}$ , this being the set of constraints that are active at x. Then the tangent and normal cone to C at x are polyhedral convex, with the tangent cone having the representation

 $T_C(x) = \{w | \langle b_i, w \rangle \leq 0 \text{ for } i \in I(x)\}$ 

and the normal cone having the representation

$$N_C(x) = \left\{ v \middle| v = \sum_{i=1}^m y_i b_i \text{ with } y_i \ge 0 \text{ for } i \in I(x), y_i = 0 \text{ for } i \notin I(x) \right\}$$

Furthermore, the tangent cone has the properties that

 $W \cap [C - x] = W \cap T_C(x)$  for some neighborhood W of 0

and

 $T_C(x) \supset T(\overline{x})$  for all x in some neighborhood U of  $\overline{x}$ .

## Critical Cone

#### Definition (Critical Cone)

For a convex set C, any  $x \in C$  and any  $v \in N_C(x)$ , the critical cone to C at x for v is

 $K_C(x,v) = \{w \in T_C(x) | w \perp v\}.$ 

Note: C polyhedral implies  $K_C(x, v)$  polyhedral

#### **Reduction Lemma**

Lemma (Reduction Lemma)

Let C be a polyhedral convex set in  $\mathbb{R}^n$ , and let

 $\overline{x} \in C$ ,  $\overline{v} \in N_C(\overline{x})$ ,  $K = K_C(\overline{x}, \overline{v})$ .

The graphical geometry of the normal cone mapping  $N_C$  around  $(\overline{x}, \overline{v})$  reduces then to the graphical geometry of the normal cone mapping  $N_K$  around (0,0), in the sense that

 $O \cap [gph \ N_C - (\overline{x}, \overline{v})] = O \cap gph \ N_K$  for some neighborhood O of (0, 0).

In other words, one has

 $\overline{v} + u \in N_C(\overline{x} + w) \Leftrightarrow u \in N_K(w)$  for (w, u) sufficiently near to (0, 0).

Proof: Blackboard.

)}.

15/19

・ロト ・回ト ・ヨト ・ヨト

## Critical Subspaces

#### Definition (Critical Subspaces)

The smallest linear subspace that includes the critical cone  $K_C(x, v)$  will be denoted by  $K_C^+(x, v)$ , whereas the largest linear subspace that is included in  $K_C(x, v)$  will be denoted by  $K_C^-(x, v)$ , the formulas being

$$\begin{aligned} & \mathcal{K}_{C}^{+}(x,v) = \mathcal{K}_{C}(x,v) - \mathcal{K}_{C}(x,v) = \{w - w' | w, w' \in \mathcal{K}_{C}(x,v)\}, \\ & \mathcal{K}_{C}^{-}(x,v) = \mathcal{K}_{C}(x,v) \cap [-\mathcal{K}_{C}(x,v)] = \{w \in \mathcal{K}_{C}(x,v) | -w \in \mathcal{K}_{C}(x,v)\}. \end{aligned}$$

# Outline



2 Polyhedral Convex Sets



Icoalization under Polyhedral Convexity



# Affine-Polyhedral Variational Inequalities

Theorem (Affine-Polyhedral Variational Inequalities)

For an affine function  $x \mapsto a + Ax$  from  $\mathbb{R}^n$  into  $\mathbb{R}^n$ , and a polyhedral convex set  $C \subset \mathbb{R}^n$ , consider the variational inequality

 $a + Ax + N_C(x) \ni 0.$ 

Let  $\overline{x}$  be a solution and let  $\overline{v} = -a - A\overline{x}$ , so that  $\overline{v} \in N_{\mathcal{C}}(\overline{x})$ , and let  $K = K_{\mathcal{C}}(\overline{x}, \overline{v})$  be the associated critical cone. Then for the mappings

$$\begin{split} G(x) &= a + Ax + N_C(x) \text{ with } G(\overline{x}) \ni 0, \\ G_0(w) &= Aw + N_K(w) \text{ with } G_0(0) \ni 0, \end{split}$$

the following properties are equivalent:

(a)  $G^{-1}$  has a Lipschitz continuous single-valued localization  $\sigma$  around 0 for  $\overline{x}$ ; (b)  $G_0^{-1}$  is a single-valued mapping with all of  $\mathbb{R}^n$  as its domain, in which case  $G_0^{-1}$  is necessarily Lipschitz continuous globally and the function  $\sigma(v) = \overline{x} + G_0^{-1}(v)$  furnishes the localization in (a). Moreover, in terms of critical subspaces  $K^+ = K_C^+(\overline{x}, \overline{v})$  and  $K^- = K_C^-(\overline{x}, \overline{v})$ , the following condition is sufficient for (a) and (b) to hold:

 $w \in K^+$ ,  $Aw \perp K^-$ ,  $\langle w, Aw \rangle \le 0 \Longrightarrow w = 0.$  (20)

うく(~ 16/19

17/19

## Example

#### Examples

When the critical cone K is a subspace, the condition in (20) reduces to the nonsingularity of the linear transformation K ∋ w → P<sub>K</sub>(Aw), where P<sub>K</sub> is the projection onto K.

イロト イヨト イヨト イヨト 三日

うへで 17/19

## Example

#### Examples

- When the critical cone K is a subspace, the condition in (20) reduces to the nonsingularity of the linear transformation  $K \ni w \mapsto P_K(Aw)$ , where  $P_K$  is the projection onto K.
- When the critical cone K is pointed, in the sense that K ∩ (−K) = {0}, the condition in (20) reduces to the requirement that ⟨w, Aw⟩ > 0 for all nonzero w ∈ K<sup>+</sup>

17/19

## Example

#### Examples

- When the critical cone K is a subspace, the condition in (20) reduces to the nonsingularity of the linear transformation  $K \ni w \mapsto P_K(Aw)$ , where  $P_K$  is the projection onto K.
- When the critical cone K is pointed, in the sense that K ∩ (−K) = {0}, the condition in (20) reduces to the requirement that ⟨w, Aw⟩ > 0 for all nonzero w ∈ K<sup>+</sup>
- Ondition (20) always holds when A is the identity matrix.

## Localization Criterion under Polyhedral Convexity

Theorem (Localization Criterion under Polyhedral Convexity)

For a variational inequality and its solution mapping under the assumption that C is polyhedral convex and f is strictly differentiable at  $(\overline{p}, \overline{x})$ , with  $\overline{x} \in S(\overline{p})$ , let

 $A = \nabla_{\times} f(\overline{p}, \overline{x})$  and  $K = K_C(\overline{x}, \overline{v})$  for  $\overline{v} = -f(\overline{p}, \overline{x})$ .

Suppose that for each  $u \in \mathbb{R}^n$  there is a unique solution  $w = \overline{s}(u)$  to the auxiliary variational inequality  $Aw - u + N_K(w) \ni 0$ , this being equivalent to saying that

 $\overline{s} = (A + N_K)^{-1}$  is everywhere single-valued, (29)

in which case the mapping  $\overline{s}$  is Lipschitz continuous globally. (A sufficient condition for this assumption to hold is the property in (20) with respect to the critical subspaces  $K^+ = K_C^+(\overline{x}, \overline{v})$  and  $K^- = K_C^-(\overline{x}, \overline{v})$ .) Then S has a Lipschitz continuous single-valued localization s around  $\overline{p}$  for  $\overline{x}$  which is semidifferentiable with

 $lip(s;\overline{p}) \leq lip(\overline{s};0)|\nabla_p f(\overline{p},\overline{x})|, \quad Ds(\overline{p})(q) = \overline{s}(-\nabla_p f(\overline{p},\overline{x})q).$ 

Moreover, under the ample parametrization condition,  $\operatorname{rank} \nabla_p f(\overline{p}, \overline{x}) = n$ , condition (29) is not only sufficient, but also necessary for a Lipschitz continuous single-valued localization of S around  $\overline{p}$  for  $\overline{x}$ .

うく(~ 18/19

# Local Behavior of Critical Cones and Subspaces

Theorem (Local Behavior of Critical Cones and Subspaces)

Let  $C \subset \mathbb{R}^n$  be a polyhedral convex set, and let  $\overline{v} \in N_C(\overline{x})$ . Then the following properties hold:

- (a)  $K_C(x,v) \subset K_C^+(\overline{x},\overline{v})$  for all  $(x,v) \in gphN_C$  in some neighborhood of  $(\overline{x},\overline{v})$ ;
- (b) K<sub>C</sub>(x, v) = K<sup>+</sup><sub>C</sub>(x̄, v̄) for some (x, v) ∈ gphN<sub>C</sub> in each neighborhood of (x̄, v̄).

# Thank you for your attention!