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Introduction

Solution mappings for parameter dependent problems:

S(p) set of all x satisfying f(p,x) =0 (f:RY x R" — R™)
with single-valued localization.

Parametrized general equation:

f(p,x)+ F(x) >0 with F a constant mapping
F(x)=—-K (K =RS x {0}™2).

Chapter 3:

F(x) is not a normal cone mapping Nc.

Therefore single-valued localizations are unlikely to exist. We are

confronted with a "varying set” S(p) which cannot be reduced to
a "varying point”.

We are rather looking for a implicit mapping theorem instead of a
generalized implicit function theorem.
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© 3.1 Set Convergence
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Inner and Outer Limits

Consider a sequence {C¥}2°; of subsets in R”
(a) outer limit:
lim sup,, C¥ is the set of all x € R” for which there exists

N e N#* and x€ € C* for k € N such that x* % x

(b) inner limit:
liminf, C¥ is the set of all x € R” for which there exists

N e N and x€ € C* for k € N such that x* % x

(c) limit:
C = lim CX = limsup C¥ = liminf C*
k k k

In this case C¥ is said to converge to C in the sense of
Painlevé-Kuratowski convergence.
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Inner and Outer Limits by neighborhoods

Consider a sequence {C¥}2°; of subsets in R”

(a) limsup Ck := {x| Ve >0, IN e N# : x € CK +cB(k € N)}
k—ro0

(b) Iikminka = {x| Ve >0,INEN: x€ Ck+B(k € N)}
— 00

Both outer and inner limits are closed sets.
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Distance function

From Section 1.4: Distance of a point x € R” to a subset C

de(x) =d(x,C) = ;gfc Ix —yl.

Proposition 3A.1 (Distance Function Characterizations of Limits)

(a) limsup CK = {x| liminfd(x, Ck) =0}
k—o00 k—o0

(b) liminf Ck = {x| kli_)m d(x, CK) = 0}

k— o0
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C¥ of sets in R” and a closed set C C R” one has:
(a) CC Iimkinf Ck if and only if for every open set O C R" with
C N O # () there exists N € N such that CKxN O # () Vk € N;

(b) C D limsup C¥ if and only if for every compact set B C R”
k

with C N B = ) there exists N € A such that CkNnB =10
Vk € N;

Proof.
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C¥ of sets in R” and a closed set C C R” one has:
(c) CC Iimkinf Ck if and only if for every p > 0 and & > 0 there is
an index set N € N such that C N pB C Ck +¢B Vk € N;

(d) C D limsup C¥ if and only if for every p > 0 and € > 0 there
k
is an index set N € A such that CkN pB C C + B Vk € N;
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C¥ of sets in R” and a closed set C C R” one has:
(e) CC Iimkinf Ck if and only if limsup d(x, C¥) < d(x, C)
k
Vx € R™:

(f) C> ||msup Ck if and only if d(x, C) < liminf d(x, ck)
Vx € R”

Proof.
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Excess and Pompeiu-Hausdorff Distance

For sets C and D in R", the excess of C beyond D is defined by

e(C,D) = sup d(x, D),
xeC

where the convention is used that

0 when D # (),
00 otherwise.

e(9.0) = {
The Pompeiu-Hausdorff distance between C and D is the quantity

h(C, D) = max{e(C, D), e(D, C)}.
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Excess and Pompeiu-Hausdorff Distance

Proposition 3A.3 (Characterization of Pompeiu-Hausdorff

Distance)

For any nonempty sets C an D in R"”, one has

h(C7 D) = sup |d(X7 C) _ d(X7 D)‘
xER"

Proof.
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Excess and Pompeiu-Hausdorff Distance

Pompeiu-Hausdorff Convergence

A sequence of sets {CK}%°  is said to converge with respect to the
Pompeiu-Hausdorff distance to a set C when C is closed and
h(Ck,C) — 0 as k — oc.
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Pompeiu-Hausdorff versus Painlevé-Kuratowski

Theorem 3A.4 (Pompeiu-Hausdorff versus Painlevé-Kuratowski)

If a sequence of closed sets {Ck}ioz1 converges to C with respect
to Pompeiu-Hausdorff distance then it also converges to C in
Painlevé-Kuratowski sense.

The opposite implication holds if there is a bounded set X which
contains C and every CK.

Proof.
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Conditions for Pompeiu-Hausdorff Convergence

Theorem 3A.6 (Conditions for Pompeiu-Hausdorff Convergence)

A sequence C¥ of sets in R" is convergent with respect to
Pompeiu-Hausdorff distance to a closed set C C R” if both of the
following conditions hold:

(a) for every open set O C R" with C N O # () there exists N € N/
such that CKN O # () for all k € N;

(b) for every open set O C R"” with C C O there exists N € N/
such that Ck ¢ O for all k € N;

Moreover, condition (a) is always necessary for Pompeiu-Hausdorff
convergence, while (b) is necessary when the set C is bounded.

— Unbounded lssue
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© 3.2 Continuity of Set-Valued Mappings
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3.2 Continuity of Set-Valued Mappings

Inner and outer limit for set-valued mappings:

limsup S(y U I|m supS
y—=y
yk—y

= {x| Jyk — 7,3xk = x with xk € S(yk)}

and

I|)r/n_>|}r/1f5 ﬂ I|m_>|orlf5( %
yk—y

= {X| Vyk — 7, IN e N, xk N with xk € S(yk)}
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Semicontinuity and Continuity

Semicontinuity and Continuity

A set-valued mapping S : R™ = R" is outer semicontinuous (osc)
at y when

limsup S(y) C S(¥)
y—=y

and inner semicontinuous (isc) at y when

liminf S(y) D S(y)
y—=y

It is called Painlevé-Kuratowski continuous at y when it is both
osc and isc at y, as expressed by

lim S(y) = 5(7)

y—y
S is called Pompeiu-Hausdorff continuous at ¥ when
S(y) is closed and lim h(S(y),S(¥)) = 0.
y—y



Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)
For S :R™ =2 R", aset D C R™ and y € domS we have:

(a) Siis osc at y relative to D if and only if for every x & S(¥)
there are neighborhoods U of x and V of y such that
DNVNSLU) =0

(b) Sis isc at y relative to D if and only if for every x € S(y) and
every neighborhood U of x there exists a neighborhood V of ¥
such that DNV c S71(V);

Proof.
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Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)
For S : R™ = R", aset D C R™ and y € domS we have:

(c) Sis osc at every y € domS if and only if gph S is closed;

(d) S is osc relative to a set D C R™ if and only if S71(B) is
closed relative to D for every compact set B C R”,

(e) S is isc relative to a set D C R™ if and only if S71(0) is open
relative to D for every open set O C R",

Proof.
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Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)
For S : R™ = R", aset D C R™ and y € domS we have:

(f) S'is osc at y relative to a set D C R™ if and only if the
distance function y — d(x, S(y)) is lower semicontinuous at y
relative to D for every x € R";

(g) Sisisc at y relative to a set D C R™ if and only if the
distance function y — d(x, S(y)) is upper semicontinuous at y
relative to D for every x € R";

Thus, S is continuous relative to D at y if and only if the distance
function y — d(x, S(y)) is continuous at y relative to D for every
x € R™:
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Characterization of Pompeiu-Hausdorff Continuity

Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

A set-valued mapping S : R™ = R" is Pompeiu-Hausdorff
continuous at y if S(¥) is closed and both of the following
conditions hold:

(a) for every open set O C R" with S(¥) N O # () there exists a
neighborhood V of ¥ such that S(y) N O # () for all y € V;

(b) for every open set O C R"” with S(y) C O there exists a
neighborhood V of y such that S(y) C O forall y € V.
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Characterization of Pompeiu-Hausdorff Continuity

Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

Moreover, if S is Pompeiu-Hausdorff continuous at ¥, then it is
continuous at y.

On the other hand, when S(¥) is nonempty and bounded,
Pompeiu-Hausdorff continuity of S at y reduces to continuity
together with the existence of a neighborhood V of y such that
S(V) is bounded;

in this case conditions (a) and (b) are not only sufficient but also
necessary for continuity of S at y.
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Applications in Optimization

Consider the following minimization problem with parameter
p € P C R, the objective function fy : R? x R” — R, and the
feasible set mapping Spas : P = R™:

minimize fo(p, x) over all x € R" satisfying x € Sfas(p)-
then the optimal value mapping acting from R to R is defined by:
Sval : p =+ inf {fo(p, X)|x € Steas(p) }
and the optimal set mapping acting from P to R”

5opt S p= {X S Sfeas(P)lfb(pa X) = Sval(p)} o
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Basic Continuity Properties of Solution Mappings in
Optimization

Theorem 3B.5 (Basic Continuity Properties of Solution Mappings
in Optimization)

In the preceding notation, let p € P be fixed with the feasible set
Steas(p) nonempty and bounded, and suppose that:

(a) the mapping Steas is Pompeiu-Hausdorff continuous at p
relative to P, or equivalently, Sk.s is continuous at p relative to
P with Sf..s(Q N P) bounded for some neighborhood Q of p,

(b) the function fy is continuous relative to P x R" at (p, x) for
every X € Seeas(P).

Then the optimal value mapping S,/ is continuous at p relative to
P, whereas the optimal set mapping Sop: is osc at p relative to P.
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© 3.3 Lipschitz Continuity of Set-Valued Mappings
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Lipschitz Continuity of Set-Valued Mappings

A mapping Sr.s : R™ = R” is said to be Lipschitz continuous
relative to a (nonempty) set D in R™ if D C domS, S is
closed-valued on D, and there exists k > 0 (Lipschitz constant)
such that

h(S(y"), S(v)) < kly’ —y| forall y',y € D,
or equivalently, there exists £ > 0 such that

S(y') € S(y) + |y’ — y|B for all y',y € D.
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Distance Characterization of Lipschitz Continuity

Proposition 3C.1 (Distance Characterization of Lipschitz

Continuity)

Consider a closed-valued mapping S : R™ = R” and a nonempty
subset D C domS. Then S is Lipschitz continuous relative to D
with constant « if and only if

d(x,S(y)) < kd(y,S 1 (x) N D) for all x € R" and y € D.

Proof.
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Polyhedral Convex Mappings

Polyhedral Convex Mappings

A mapping S : R™ = R" is said to be polyhedral convex if its
graph is a polyhedral convex set.

Theorem 3C.3 (Lipschitz Continuity of Polyhedral Convex

Mappings

Any polyhedral convex mapping Sf..s : R™ = R” is Lipschitz
continuous relative to its domain.

Proof.
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Polyhedral Convex Mappings

Lemma 3C.4 (Hoffman Lemma)
For the set-valued mapping

S:y—{xeR"Ax <y} for y e R™,

where A is a nonzero m X n matrix, there exists a constant L such
that

d(x,S(y)) < L|(Ax — y)4| for every y € domS and every x € R".
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@ 3.4 Outer Lipschitz Continuity
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Quter Lipschitz Continuity

A mapping S : R™ = R” is said to be outer Lipschitz continuous
at y relative to a set D if y € D C domS, S(y) is a closed set, and
there is a constant x > 0 along with a neighborhood V of ¥ such
that

e(5(y), 5(¥)) < kly —y[ forall y € VN D,
or equivalently
S(y)cS(y)+kly —yBforally e VND.

If S is outer Lipschitz continuous at every point y € D relative to
D with the same k, then S is said to be outer Lipschitz continuous
relative to D.
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Quter Lipschitz Continuity

(a) Lipschitz continuous mapping relative to a set D is also outer
Lipschitz continuous

(b) Outer Lipschitz continuous at a point y implies outer
semicontinuity at y

(c) For single-valued mappings, outer Lipschitz continuity
becomes calmness
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Polyhedral Mappings

A set-valued mapping S : R™ = R” will be called polyhedral if gph
S is the union of finitely many sets that are polyhedral convex in
R™ x R"

Theorem 3D.1 (Outer Lipschitz Continuity of Polyhedral

Mappings)
Any polyhedral mapping S : R™ == R" is outer Lipschitz
continuous at every point of its domain.
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Polyhedral Mappings

Theorem 3D.3 (isc Criterion for Lipschitz Continuity)

Consider a set-valued mapping S : R = R" and a convex set

D C domS such that S(y) is closed for every y € D. Then S is
Lipschitz continuous relative to D with constant « if and only if S
is both isc relative to D and outer Lipschitz continuous relative to
D with constant x.
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Polyhedral Mappings

Corollary 3D.4 (Lipschitz Continuity of Polyhedral Mappings)

Let S : R™ = R" be polyhedral and let D C domS be convex.
Then S is isc relative to D if and only if S is actually Lipschitz
continuous relative to D. Thus, for a polyhedral mapping,
continuity relative to its domain implies Lipschitz continuity.
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Thank you for your attention!
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