Set-Valued Analysis of Solution Mappings from Chapter 3 of "Implicit Functions and Solution Mappings" by A.L.Dontchev and R.T.Rockafellar

Armin Fohler

19. January, 2016

Armin Fohler Set-Valued Solution Mappings

# Introduction

#### Chapter 2:

Solution mappings for parameter dependent problems: S(p) set of all x satisfying f(p, x) = 0  $(f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^m)$ with single-valued localization. Parametrized general equation:

$$\begin{split} f(p,x)+F(x) &\ni 0 \qquad \text{with F a constant mapping} \\ F(x) &\equiv -\mathcal{K} \qquad (\mathcal{K} = \mathbb{R}^s_- \times \{0\}^{m-s}). \end{split}$$

#### Chapter 3:

F(x) is not a normal cone mapping  $N_C$ .

Therefore single-valued localizations are unlikely to exist. We are confronted with a "varying set" S(p) which cannot be reduced to a "varying point".

We are rather looking for a *implicit mapping theorem instead of a* generalized implicit function theorem.



2 3.2 Continuity of Set-Valued Mappings

3.3 Lipschitz Continuity of Set-Valued Mappings



4 3.4 Outer Lipschitz Continuity



#### 2 3.2 Continuity of Set-Valued Mappings

## 3.3 Lipschitz Continuity of Set-Valued Mappings

4 3.4 Outer Lipschitz Continuity

# Inner and Outer Limits

Consider a sequence  $\{C^k\}_{k=1}^{\infty}$  of subsets in  $\mathbb{R}^n$ 

(a) outer limit: lim sup<sub>k</sub>  $C^k$  is the set of all  $x \in \mathbb{R}^n$  for which there exists

$$N \in \mathcal{N}^{\#}$$
 and  $x^k \in C^k$  for  $k \in N$  such that  $x^k \stackrel{N}{ o} x$ 

(b) inner limit: lim inf<sub>k</sub>  $C^k$  is the set of all  $x \in \mathbb{R}^n$  for which there exists

$$N \in \mathcal{N}$$
 and  $x^k \in C^k$  for  $k \in N$  such that  $x^k \stackrel{N}{\rightarrow} x$ 

(c) limit:

$$C = \lim_{k} C^{k} = \limsup_{k} C^{k} = \liminf_{k} C^{k}$$

In this case  $C^k$  is said to converge to C in the sense of Painlevé-Kuratowski convergence.

Consider a sequence  $\{C^k\}_{k=1}^{\infty}$  of subsets in  $\mathbb{R}^n$ (a)  $\limsup_{k \to \infty} C^k := \{x \mid \forall \varepsilon > 0, \exists N \in \mathcal{N}^{\#} : x \in C^k + \varepsilon \mathbb{B} (k \in N)\}$ (b)  $\liminf_{k \to \infty} C^k := \{x \mid \forall \varepsilon > 0, \exists N \in \mathcal{N} : x \in C^k + \varepsilon \mathbb{B} (k \in N)\}$ 

Both outer and inner limits are *closed sets*.

From Section 1.4: Distance of a point  $x \in \mathbb{R}^n$  to a subset *C* 

$$d_C(x) = d(x, C) = \inf_{y \in C} |x - y|.$$

Proposition 3A.1 (Distance Function Characterizations of Limits)

(a) 
$$\limsup_{k \to \infty} C^k = \{x \mid \liminf_{k \to \infty} d(x, C^k) = 0\}$$

(b) 
$$\liminf_{k\to\infty} C^k = \{x \mid \lim_{k\to\infty} d(x, C^k) = 0\}$$

Theorem 3A.2 (Characterization of Painlevé-Kuratowski Convergence)

For a sequence  $C^k$  of sets in  $\mathbb{R}^n$  and a closed set  $C \subset \mathbb{R}^n$  one has:

- (a)  $C \subset \liminf_{k} C^{k}$  if and only if for every open set  $O \subset \mathbb{R}^{n}$  with  $C \cap O \neq \emptyset$  there exists  $N \in \mathcal{N}$  such that  $C^{k} \cap O \neq \emptyset \ \forall k \in N$ ;
- (b)  $C \supset \limsup_{k} C^{k}$  if and only if for every compact set  $B \subset \mathbb{R}^{n}$ with  $C \cap B = \emptyset$  there exists  $N \in \mathcal{N}$  such that  $C^{k} \cap B = \emptyset$  $\forall k \in N$ ;

# Theorem 3A.2 (Characterization of Painlevé-Kuratowski Convergence)

For a sequence  $C^k$  of sets in  $\mathbb{R}^n$  and a closed set  $C \subset \mathbb{R}^n$  one has: (c)  $C \subset \liminf_k C^k$  if and only if for every  $\rho > 0$  and  $\varepsilon > 0$  there is

an index set  $N \in \mathcal{N}$  such that  $C \cap \rho \mathbb{B} \subset C^k + \varepsilon \mathbb{B} \ \forall k \in N$ ;

(d)  $C \supset \limsup_{k} C^{k}$  if and only if for every  $\rho > 0$  and  $\varepsilon > 0$  there is an index set  $N \in \mathcal{N}$  such that  $C^{k} \cap \rho \mathbb{B} \subset C + \varepsilon \mathbb{B} \ \forall k \in N$ ;

# Theorem 3A.2 (Characterization of Painlevé-Kuratowski Convergence)

For a sequence  $C^k$  of sets in  $\mathbb{R}^n$  and a closed set  $C \subset \mathbb{R}^n$  one has:

(e) 
$$C \subset \liminf_{k} C^{k}$$
 if and only if  $\limsup_{k} d(x, C^{k}) \leq d(x, C)$   
 $\forall x \in \mathbb{R}^{n}$ ;

# (f) $C \supset \limsup C^k$ if and only if $d(x, C) \leq \liminf_k d(x, C^k)$ $\forall x \in \mathbb{R}^n$ ;

For sets C and D in  $\mathbb{R}^n$ , the excess of C beyond D is defined by

$$e(C,D) = \sup_{x \in C} d(x,D),$$

where the convention is used that

$$\mathsf{e}(\emptyset,D) = egin{cases} 0 & ext{when } D 
eq \emptyset, \ \infty & ext{otherwise.} \end{cases}$$

The Pompeiu-Hausdorff distance between C and D is the quantity

$$h(C,D) = \max\{e(C,D), e(D,C)\}.$$

# Proposition 3A.3 (Characterization of Pompeiu-Hausdorff Distance)

For any nonempty sets C an D in  $\mathbb{R}^n$ , one has

$$h(C,D) = \sup_{x \in \mathbb{R}^n} |d(x,C) - d(x,D)|.$$

#### Pompeiu-Hausdorff Convergence

A sequence of sets  $\{C^k\}_{k=1}^{\infty}$  is said to converge with respect to the Pompeiu-Hausdorff distance to a set C when C is closed and  $h(C^k, C) \to 0$  as  $k \to \infty$ .

#### Theorem 3A.4 (Pompeiu-Hausdorff versus Painlevé-Kuratowski)

If a sequence of closed sets  $\{C^k\}_{k=1}^{\infty}$  converges to C with respect to Pompeiu-Hausdorff distance then it also converges to C in Painlevé-Kuratowski sense. The opposite implication holds if there is a bounded set X which contains C and every  $C^k$ .

#### Theorem 3A.6 (Conditions for Pompeiu-Hausdorff Convergence)

A sequence  $C^k$  of sets in  $\mathbb{R}^n$  is convergent with respect to Pompeiu-Hausdorff distance to a closed set  $C \subset \mathbb{R}^n$  if both of the following conditions hold:

(a) for every open set  $O \subset \mathbb{R}^n$  with  $C \cap O \neq \emptyset$  there exists  $N \in \mathcal{N}$  such that  $C^k \cap O \neq \emptyset$  for all  $k \in N$ ;

(b) for every open set  $O \subset \mathbb{R}^n$  with  $C \subset O$  there exists  $N \in \mathcal{N}$  such that  $C^k \subset O$  for all  $k \in N$ ;

Moreover, condition (a) is always necessary for Pompeiu-Hausdorff convergence, while (b) is necessary when the set C is bounded.

 $\rightarrow$  Unbounded Issue





## 2 3.2 Continuity of Set-Valued Mappings

## **3** 3.3 Lipschitz Continuity of Set-Valued Mappings



# 3.2 Continuity of Set-Valued Mappings

Inner and outer limit for set-valued mappings:

$$\limsup_{y \to \bar{y}} S(y) = \bigcup_{y^k \to \bar{y}} \limsup_{k \to \infty} S(y^k)$$
$$= \left\{ x \mid \exists y^k \to \bar{y}, \exists x^k \to x \text{ with } x^k \in S(y^k) \right\}$$

and

$$\begin{split} \liminf_{y \to \bar{y}} S(y) &= \bigcap_{y^k \to \bar{y}} \liminf_{k \to \infty} S(y^k) \\ &= \left\{ x \mid \ \forall y^k \to \bar{y}, \exists N \in \mathcal{N}, x^k \xrightarrow{N} x \text{ with } x^k \in S(y^k) \right\} \end{split}$$

# Semicontinuity and Continuity

#### Semicontinuity and Continuity

A set-valued mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  is outer semicontinuous (osc) at  $\overline{y}$  when

$$\limsup_{y\to \bar y} S(y)\subset S(\bar y)$$

and inner semicontinuous (isc) at  $\bar{y}$  when

 $\liminf_{y\to \bar y} S(y)\supset S(\bar y)$ 

It is called Painlevé-Kuratowski continuous at  $\bar{y}$  when it is both osc and isc at  $\bar{y},$  as expressed by

$$\lim_{y\to \bar{y}} S(y) = S(\bar{y})$$

S is called Pompeiu-Hausdorff continuous at  $\bar{y}$  when

 $S(ar{y})$  is closed and  $\lim_{y o ar{y}}h(S(y),S(ar{y}))=0.$ 

#### Theorem 3B.2 (Characterization of Semicontinuity)

For  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ , a set  $D \subset \mathbb{R}^m$  and  $\bar{y} \in domS$  we have:

- (a) S is osc at  $\bar{y}$  relative to D if and only if for every  $x \notin S(\bar{y})$ there are neighborhoods U of x and V of  $\bar{y}$  such that  $D \cap V \cap S^{-1}(U) = \emptyset$ ;
- (b) S is isc at  $\bar{y}$  relative to D if and only if for every  $x \in S(\bar{y})$  and every neighborhood U of x there exists a neighborhood V of  $\bar{y}$  such that  $D \cap V \subset S^{-1}(U)$ ;

#### Theorem 3B.2 (Characterization of Semicontinuity)

- For  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ , a set  $D \subset \mathbb{R}^m$  and  $\overline{y} \in domS$  we have:
- (c) S is osc at every  $y \in domS$  if and only if gph S is closed;
- (d) S is osc relative to a set D ⊂ ℝ<sup>m</sup> if and only if S<sup>-1</sup>(B) is closed relative to D for every compact set B ⊂ ℝ<sup>n</sup>;
- (e) S is isc relative to a set  $D \subset \mathbb{R}^m$  if and only if  $S^{-1}(O)$  is open relative to D for every open set  $O \subset \mathbb{R}^n$ ;

#### Theorem 3B.2 (Characterization of Semicontinuity)

For  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ , a set  $D \subset \mathbb{R}^m$  and  $\bar{y} \in domS$  we have:

- (f) S is osc at  $\bar{y}$  relative to a set  $D \subset \mathbb{R}^m$  if and only if the distance function  $y \mapsto d(x, S(y))$  is lower semicontinuous at  $\bar{y}$  relative to D for every  $x \in \mathbb{R}^n$ ;
- (g) S is isc at  $\bar{y}$  relative to a set  $D \subset \mathbb{R}^m$  if and only if the distance function  $y \mapsto d(x, S(y))$  is upper semicontinuous at  $\bar{y}$  relative to D for every  $x \in \mathbb{R}^n$ ;

Thus, S is continuous relative to D at  $\bar{y}$  if and only if the distance function  $y \mapsto d(x, S(y))$  is continuous at  $\bar{y}$  relative to D for every  $x \in \mathbb{R}^n$ ;

#### Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

A set-valued mapping  $S : \mathbb{R}^m \Rightarrow \mathbb{R}^n$  is Pompeiu-Hausdorff continuous at  $\bar{y}$  if  $S(\bar{y})$  is closed and both of the following conditions hold:

- (a) for every open set  $O \subset \mathbb{R}^n$  with  $S(\bar{y}) \cap O \neq \emptyset$  there exists a neighborhood V of  $\bar{y}$  such that  $S(y) \cap O \neq \emptyset$  for all  $y \in V$ ;
- (b) for every open set O ⊂ ℝ<sup>n</sup> with S(ȳ) ⊂ O there exists a neighborhood V of ȳ such that S(y) ⊂ O for all y ∈ V.

Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

Moreover, if S is Pompeiu-Hausdorff continuous at  $\bar{y}$ , then it is continuous at  $\bar{y}$ .

On the other hand, when  $S(\bar{y})$  is nonempty and bounded, Pompeiu-Hausdorff continuity of S at  $\bar{y}$  reduces to continuity

together with the existence of a neighborhood V of  $\bar{y}$  such that S(V) is bounded;

in this case conditions (a) and (b) are not only sufficient but also necessary for continuity of S at  $\bar{y}$ .

Consider the following minimization problem with parameter  $p \in P \subset \mathbb{R}^d$ , the objective function  $f_0 : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$ , and the feasible set mapping  $S_{feas} : P \Longrightarrow \mathbb{R}^n$ :

minimize  $f_0(p, x)$  over all  $x \in \mathbb{R}^n$  satisfying  $x \in S_{feas}(p)$ .

then the optimal value mapping acting from  $\mathbb{R}^d$  to  $\mathbb{R}$  is defined by:

$$S_{val}: p \mapsto \inf_{x} \{f_0(p,x) | x \in S_{feas}(p)\}$$

and the optimal set mapping acting from P to  $\mathbb{R}^n$ 

$$S_{opt}: p \mapsto \{x \in S_{feas}(p) | f_0(p, x) = S_{val}(p)\}.$$

# Basic Continuity Properties of Solution Mappings in Optimization

Theorem 3B.5 (Basic Continuity Properties of Solution Mappings in Optimization)

In the preceding notation, let  $\bar{p} \in P$  be fixed with the feasible set  $S_{feas}(\bar{p})$  nonempty and bounded, and suppose that:

- (a) the mapping  $S_{feas}$  is Pompeiu-Hausdorff continuous at  $\bar{p}$  relative to P, or equivalently,  $S_{feas}$  is continuous at  $\bar{p}$  relative to P with  $S_{feas}(Q \cap P)$  bounded for some neighborhood Q of  $\bar{p}$ ,
- (b) the function  $f_0$  is continuous relative to  $P \times \mathbb{R}^n$  at  $(\bar{p}, \bar{x})$  for every  $\bar{x} \in S_{feas}(\bar{p})$ .

Then the optimal value mapping  $S_{val}$  is continuous at  $\bar{p}$  relative to P, whereas the optimal set mapping  $S_{opt}$  is osc at  $\bar{p}$  relative to P.



### 2 3.2 Continuity of Set-Valued Mappings

## 3.3 Lipschitz Continuity of Set-Valued Mappings



A mapping  $S_{feas} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  is said to be Lipschitz continuous relative to a (nonempty) set D in  $\mathbb{R}^m$  if  $D \subset domS$ , S is closed-valued on D, and there exists  $\kappa \ge 0$  (Lipschitz constant) such that

$$h(S(y'), S(y)) \le \kappa |y' - y|$$
 for all  $y', y \in D$ ,

or equivalently, there exists  $\kappa \geq 0$  such that

$$S(y') \subset S(y) + \kappa |y' - y| \mathbb{B}$$
 for all  $y', y \in D$ .

# Proposition 3C.1 (Distance Characterization of Lipschitz Continuity)

Consider a closed-valued mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  and a nonempty subset  $D \subset domS$ . Then S is Lipschitz continuous relative to D with constant  $\kappa$  if and only if

$$d(x, S(y)) \leq \kappa d(y, S^{-1}(x) \cap D)$$
 for all  $x \in \mathbb{R}^n$  and  $y \in D$ .

#### Polyhedral Convex Mappings

A mapping  $S : \mathbb{R}^m \Longrightarrow \mathbb{R}^n$  is said to be polyhedral convex if its graph is a polyhedral convex set.

# Theorem 3C.3 (Lipschitz Continuity of Polyhedral Convex Mappings

Any polyhedral convex mapping  $S_{feas} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  is Lipschitz continuous relative to its domain.

#### Lemma 3C.4 (Hoffman Lemma)

For the set-valued mapping

$$S: y \mapsto \{x \in \mathbb{R}^n | Ax \le y\}$$
 for  $y \in \mathbb{R}^m$ ,

where A is a nonzero  $m \times n$  matrix, there exists a constant L such that

 $d(x, S(y)) \leq L|(Ax - y)_+|$  for every  $y \in domS$  and every  $x \in \mathbb{R}^n$ .



#### 2 3.2 Continuity of Set-Valued Mappings

## 3.3 Lipschitz Continuity of Set-Valued Mappings



A mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  is said to be outer Lipschitz continuous at  $\overline{y}$  relative to a set D if  $\overline{y} \in D \subset domS$ , S(y) is a closed set, and there is a constant  $\kappa \ge 0$  along with a neighborhood V of  $\overline{y}$  such that

$$e(S(y), S(\bar{y})) \le \kappa |y - \bar{y}|$$
 for all  $y \in V \cap D$ ,

or equivalently

$$S(y) \subset S(\bar{y}) + \kappa |y - \bar{y}| \mathbb{B}$$
 for all  $y \in V \cap D$ .

If S is outer Lipschitz continuous at every point  $y \in D$  relative to D with the same  $\kappa$ , then S is said to be outer Lipschitz continuous relative to D.

- (a) Lipschitz continuous mapping relative to a set *D* is also outer Lipschitz continuous
- (b) Outer Lipschitz continuous at a point y implies outer semicontinuity at y
- (c) For single-valued mappings, outer Lipschitz continuity becomes calmness

A set-valued mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  will be called polyhedral if gph S is the union of finitely many sets that are polyhedral convex in  $\mathbb{R}^m \times \mathbb{R}^n$ 

Theorem 3D.1 (Outer Lipschitz Continuity of Polyhedral Mappings)

Any polyhedral mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  is outer Lipschitz continuous at every point of its domain.

#### Theorem 3D.3 (isc Criterion for Lipschitz Continuity)

Consider a set-valued mapping  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  and a convex set  $D \subset domS$  such that S(y) is closed for every  $y \in D$ . Then S is Lipschitz continuous relative to D with constant  $\kappa$  if and only if S is both isc relative to D and outer Lipschitz continuous relative to D with constant  $\kappa$ .

#### Corollary 3D.4 (Lipschitz Continuity of Polyhedral Mappings)

Let  $S : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  be polyhedral and let  $D \subset domS$  be convex. Then S is isc relative to D if and only if S is actually Lipschitz continuous relative to D. Thus, for a polyhedral mapping, continuity relative to its domain implies Lipschitz continuity.

#### Thank you for your attention!

æ

Э