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Introduction

Chapter 2:

Solution mappings for parameter dependent problems:
S(p) set of all x satisfying f (p, x) = 0 (f : Rd × Rn → Rm)
with single-valued localization.
Parametrized general equation:

f (p, x) + F (x) 3 0 with F a constant mapping

F (x) ≡ −K (K = Rs
− × {0}m−s).

Chapter 3:

F (x) is not a normal cone mapping NC .
Therefore single-valued localizations are unlikely to exist. We are
confronted with a ”varying set” S(p) which cannot be reduced to
a ”varying point”.
We are rather looking for a implicit mapping theorem instead of a
generalized implicit function theorem.
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Inner and Outer Limits

Consider a sequence {C k}∞k=1 of subsets in Rn

(a) outer limit:
lim supk C

k is the set of all x ∈ Rn for which there exists

N ∈ N# and xk ∈ C k for k ∈ N such that xk
N→ x

(b) inner limit:
lim infk C

k is the set of all x ∈ Rn for which there exists

N ∈ N and xk ∈ C k for k ∈ N such that xk
N→ x

(c) limit:
C = lim

k
C k = lim sup

k
C k = lim inf

k
C k

In this case C k is said to converge to C in the sense of
Painlevé-Kuratowski convergence.
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Inner and Outer Limits by neighborhoods

Consider a sequence {C k}∞k=1 of subsets in Rn

(a) lim sup
k→∞

C k := {x | ∀ε > 0, ∃N ∈ N# : x ∈ C k + εB (k ∈ N)}

(b) lim inf
k→∞

C k := {x | ∀ε > 0, ∃N ∈ N : x ∈ C k + εB (k ∈ N)}

Both outer and inner limits are closed sets.
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Distance function

From Section 1.4: Distance of a point x ∈ Rn to a subset C

dC (x) = d(x ,C ) = inf
y∈C
|x − y |.

Proposition 3A.1 (Distance Function Characterizations of Limits)

(a) lim sup
k→∞

C k = {x | lim inf
k→∞

d(x ,C k) = 0}

(b) lim inf
k→∞

C k = {x | lim
k→∞

d(x ,C k) = 0}
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C k of sets in Rn and a closed set C ⊂ Rn one has:

(a) C ⊂ lim inf
k

C k if and only if for every open set O ⊂ Rn with

C ∩ O 6= ∅ there exists N ∈ N such that C k ∩ O 6= ∅ ∀k ∈ N;

(b) C ⊃ lim sup
k

C k if and only if for every compact set B ⊂ Rn

with C ∩ B = ∅ there exists N ∈ N such that C k ∩ B = ∅
∀k ∈ N;

Proof.
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C k of sets in Rn and a closed set C ⊂ Rn one has:

(c) C ⊂ lim inf
k

C k if and only if for every ρ > 0 and ε > 0 there is

an index set N ∈ N such that C ∩ ρB ⊂ C k + εB ∀k ∈ N;

(d) C ⊃ lim sup
k

C k if and only if for every ρ > 0 and ε > 0 there

is an index set N ∈ N such that C k ∩ ρB ⊂ C + εB ∀k ∈ N;
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Painlevé-Kuratowski Convergence

Theorem 3A.2 (Characterization of Painlevé-Kuratowski
Convergence)

For a sequence C k of sets in Rn and a closed set C ⊂ Rn one has:

(e) C ⊂ lim inf
k

C k if and only if lim sup
k

d(x ,C k) ≤ d(x ,C )

∀x ∈ Rn;

(f) C ⊃ lim sup
k

C k if and only if d(x ,C ) ≤ lim inf
k

d(x ,C k)

∀x ∈ Rn;

Proof.
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Excess and Pompeiu-Hausdorff Distance

For sets C and D in Rn, the excess of C beyond D is defined by

e(C ,D) = sup
x∈C

d(x ,D),

where the convention is used that

e(∅,D) =

{
0 when D 6= ∅,
∞ otherwise.

The Pompeiu-Hausdorff distance between C and D is the quantity

h(C ,D) = max{e(C ,D), e(D,C )}.
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Excess and Pompeiu-Hausdorff Distance

Proposition 3A.3 (Characterization of Pompeiu-Hausdorff
Distance)

For any nonempty sets C an D in Rn, one has

h(C ,D) = sup
x∈Rn
|d(x ,C )− d(x ,D)|.

Proof.
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Excess and Pompeiu-Hausdorff Distance

Pompeiu-Hausdorff Convergence

A sequence of sets {C k}∞k=1 is said to converge with respect to the
Pompeiu-Hausdorff distance to a set C when C is closed and
h(C k ,C )→ 0 as k →∞.
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Pompeiu-Hausdorff versus Painlevé-Kuratowski

Theorem 3A.4 (Pompeiu-Hausdorff versus Painlevé-Kuratowski)

If a sequence of closed sets {C k}∞k=1 converges to C with respect
to Pompeiu-Hausdorff distance then it also converges to C in
Painlevé-Kuratowski sense.
The opposite implication holds if there is a bounded set X which
contains C and every C k .

Proof.
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Conditions for Pompeiu-Hausdorff Convergence

Theorem 3A.6 (Conditions for Pompeiu-Hausdorff Convergence)

A sequence C k of sets in Rn is convergent with respect to
Pompeiu-Hausdorff distance to a closed set C ⊂ Rn if both of the
following conditions hold:

(a) for every open set O ⊂ Rn with C ∩O 6= ∅ there exists N ∈ N
such that C k ∩ O 6= ∅ for all k ∈ N;

(b) for every open set O ⊂ Rn with C ⊂ O there exists N ∈ N
such that C k ⊂ O for all k ∈ N;

Moreover, condition (a) is always necessary for Pompeiu-Hausdorff
convergence, while (b) is necessary when the set C is bounded.

→ Unbounded Issue
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3.2 Continuity of Set-Valued Mappings

Inner and outer limit for set-valued mappings:

lim sup
y→ȳ

S(y) =
⋃

yk→ȳ

lim sup
k→∞

S(yk)

=
{
x | ∃yk → ȳ ,∃xk → x with xk ∈ S(yk)

}
and

lim inf
y→ȳ

S(y) =
⋂

yk→ȳ

lim inf
k→∞

S(yk)

=
{
x | ∀yk → ȳ ,∃N ∈ N , xk N→ x with xk ∈ S(yk)

}
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Semicontinuity and Continuity

Semicontinuity and Continuity

A set-valued mapping S : Rm ⇒ Rn is outer semicontinuous (osc)
at ȳ when

lim sup
y→ȳ

S(y) ⊂ S(ȳ)

and inner semicontinuous (isc) at ȳ when

lim inf
y→ȳ

S(y) ⊃ S(ȳ)

It is called Painlevé-Kuratowski continuous at ȳ when it is both
osc and isc at ȳ , as expressed by

lim
y→ȳ

S(y) = S(ȳ)

S is called Pompeiu-Hausdorff continuous at ȳ when

S(ȳ) is closed and lim
y→ȳ

h(S(y), S(ȳ)) = 0.
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Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)

For S : Rm ⇒ Rn, a set D ⊂ Rm and ȳ ∈ domS we have:

(a) S is osc at ȳ relative to D if and only if for every x 6∈ S(ȳ)
there are neighborhoods U of x and V of ȳ such that
D ∩ V ∩ S−1(U) = ∅;

(b) S is isc at ȳ relative to D if and only if for every x ∈ S(ȳ) and
every neighborhood U of x there exists a neighborhood V of ȳ
such that D ∩ V ⊂ S−1(U);

Proof.
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Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)

For S : Rm ⇒ Rn, a set D ⊂ Rm and ȳ ∈ domS we have:

(c) S is osc at every y ∈ domS if and only if gph S is closed;

(d) S is osc relative to a set D ⊂ Rm if and only if S−1(B) is
closed relative to D for every compact set B ⊂ Rn;

(e) S is isc relative to a set D ⊂ Rm if and only if S−1(O) is open
relative to D for every open set O ⊂ Rn;

Proof.
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Characterization of Semicontinuity

Theorem 3B.2 (Characterization of Semicontinuity)

For S : Rm ⇒ Rn, a set D ⊂ Rm and ȳ ∈ domS we have:

(f) S is osc at ȳ relative to a set D ⊂ Rm if and only if the
distance function y 7→ d(x , S(y)) is lower semicontinuous at ȳ
relative to D for every x ∈ Rn;

(g) S is isc at ȳ relative to a set D ⊂ Rm if and only if the
distance function y 7→ d(x , S(y)) is upper semicontinuous at ȳ
relative to D for every x ∈ Rn;

Thus, S is continuous relative to D at ȳ if and only if the distance
function y 7→ d(x , S(y)) is continuous at ȳ relative to D for every
x ∈ Rn;
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Characterization of Pompeiu-Hausdorff Continuity

Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

A set-valued mapping S : Rm ⇒ Rn is Pompeiu-Hausdorff
continuous at ȳ if S(ȳ) is closed and both of the following
conditions hold:

(a) for every open set O ⊂ Rn with S(ȳ) ∩ O 6= ∅ there exists a
neighborhood V of ȳ such that S(y) ∩ O 6= ∅ for all y ∈ V ;

(b) for every open set O ⊂ Rn with S(ȳ) ⊂ O there exists a
neighborhood V of ȳ such that S(y) ⊂ O for all y ∈ V .
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Characterization of Pompeiu-Hausdorff Continuity

Theorem 3B.3 (Characterization of Pompeiu-Hausdorff Continuity)

Moreover, if S is Pompeiu-Hausdorff continuous at ȳ , then it is
continuous at ȳ .
On the other hand, when S(ȳ) is nonempty and bounded,
Pompeiu-Hausdorff continuity of S at ȳ reduces to continuity
together with the existence of a neighborhood V of ȳ such that
S(V ) is bounded;
in this case conditions (a) and (b) are not only sufficient but also
necessary for continuity of S at ȳ .
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Applications in Optimization

Consider the following minimization problem with parameter
p ∈ P ⊂ Rd , the objective function f0 : Rd × Rn → R, and the
feasible set mapping Sfeas : P ⇒ Rn:

minimize f0(p, x) over all x ∈ Rn satisfying x ∈ Sfeas(p).

then the optimal value mapping acting from Rd to R is defined by:

Sval : p 7→ inf
x
{f0(p, x)|x ∈ Sfeas(p)}

and the optimal set mapping acting from P to Rn

Sopt : p 7→ {x ∈ Sfeas(p)|f0(p, x) = Sval(p)} .
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Basic Continuity Properties of Solution Mappings in
Optimization

Theorem 3B.5 (Basic Continuity Properties of Solution Mappings
in Optimization)

In the preceding notation, let p̄ ∈ P be fixed with the feasible set
Sfeas(p̄) nonempty and bounded, and suppose that:

(a) the mapping Sfeas is Pompeiu-Hausdorff continuous at p̄
relative to P, or equivalently, Sfeas is continuous at p̄ relative to
P with Sfeas(Q ∩ P) bounded for some neighborhood Q of p̄,

(b) the function f0 is continuous relative to P × Rn at (p̄, x̄) for
every x̄ ∈ Sfeas(p̄).

Then the optimal value mapping Sval is continuous at p̄ relative to
P, whereas the optimal set mapping Sopt is osc at p̄ relative to P.
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Lipschitz Continuity of Set-Valued Mappings

A mapping Sfeas : Rm ⇒ Rn is said to be Lipschitz continuous
relative to a (nonempty) set D in Rm if D ⊂ domS , S is
closed-valued on D, and there exists κ ≥ 0 (Lipschitz constant)
such that

h(S(y ′), S(y)) ≤ κ|y ′ − y | for all y ′, y ∈ D,

or equivalently, there exists κ ≥ 0 such that

S(y ′) ⊂ S(y) + κ|y ′ − y |B for all y ′, y ∈ D.
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Distance Characterization of Lipschitz Continuity

Proposition 3C.1 (Distance Characterization of Lipschitz
Continuity)

Consider a closed-valued mapping S : Rm ⇒ Rn and a nonempty
subset D ⊂ domS . Then S is Lipschitz continuous relative to D
with constant κ if and only if

d(x , S(y)) ≤ κd(y , S−1(x) ∩ D) for all x ∈ Rn and y ∈ D.

Proof.
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Polyhedral Convex Mappings

Polyhedral Convex Mappings

A mapping S : Rm ⇒ Rn is said to be polyhedral convex if its
graph is a polyhedral convex set.

Theorem 3C.3 (Lipschitz Continuity of Polyhedral Convex
Mappings

Any polyhedral convex mapping Sfeas : Rm ⇒ Rn is Lipschitz
continuous relative to its domain.

Proof.
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Polyhedral Convex Mappings

Lemma 3C.4 (Hoffman Lemma)

For the set-valued mapping

S : y 7→ {x ∈ Rn|Ax ≤ y} for y ∈ Rm,

where A is a nonzero m × n matrix, there exists a constant L such
that

d(x , S(y)) ≤ L|(Ax − y)+| for every y ∈ domS and every x ∈ Rn.
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Outer Lipschitz Continuity

A mapping S : Rm ⇒ Rn is said to be outer Lipschitz continuous
at ȳ relative to a set D if ȳ ∈ D ⊂ domS , S(y) is a closed set, and
there is a constant κ ≥ 0 along with a neighborhood V of ȳ such
that

e(S(y), S(ȳ)) ≤ κ|y − ȳ | for all y ∈ V ∩ D,

or equivalently

S(y) ⊂ S(ȳ) + κ|y − ȳ |B for all y ∈ V ∩ D.

If S is outer Lipschitz continuous at every point y ∈ D relative to
D with the same κ, then S is said to be outer Lipschitz continuous
relative to D.
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Outer Lipschitz Continuity

(a) Lipschitz continuous mapping relative to a set D is also outer
Lipschitz continuous

(b) Outer Lipschitz continuous at a point y implies outer
semicontinuity at y

(c) For single-valued mappings, outer Lipschitz continuity
becomes calmness
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Polyhedral Mappings

A set-valued mapping S : Rm ⇒ Rn will be called polyhedral if gph
S is the union of finitely many sets that are polyhedral convex in
Rm × Rn

Theorem 3D.1 (Outer Lipschitz Continuity of Polyhedral
Mappings)

Any polyhedral mapping S : Rm ⇒ Rn is outer Lipschitz
continuous at every point of its domain.

Armin Fohler Set-Valued Solution Mappings



Polyhedral Mappings

Theorem 3D.3 (isc Criterion for Lipschitz Continuity)

Consider a set-valued mapping S : Rm ⇒ Rn and a convex set
D ⊂ domS such that S(y) is closed for every y ∈ D. Then S is
Lipschitz continuous relative to D with constant κ if and only if S
is both isc relative to D and outer Lipschitz continuous relative to
D with constant κ.

Armin Fohler Set-Valued Solution Mappings



Polyhedral Mappings

Corollary 3D.4 (Lipschitz Continuity of Polyhedral Mappings)

Let S : Rm ⇒ Rn be polyhedral and let D ⊂ domS be convex.
Then S is isc relative to D if and only if S is actually Lipschitz
continuous relative to D. Thus, for a polyhedral mapping,
continuity relative to its domain implies Lipschitz continuity.
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Thank you for your attention!
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