01 Show that every linear second order partial differential equation

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=f(x),
$$

with $a \in \mathcal{C}^{1}(0,1)$ and $b, c \in \mathcal{C}(0,1)$ can be rewritten in the form

$$
\bar{a}(x) u^{\prime \prime}(x)+\bar{b}(x) u^{\prime}(x)+c(x) u(x)=f(x),
$$

and find suitable functions $\bar{a} \in \mathcal{C}^{1}(0,1)$ and $\bar{b} \in \mathcal{C}(0,1)$. Show also the reverse direction.

02 Derive the variational formulations of the two following boundary value problems:
(a) $\quad\left\{\begin{array}{rlrl}-u^{\prime \prime}(x)+u^{\prime}(x) & =f(x) & & \text { for } x \in(0,1) \\ u(0) & =g_{0} & \\ u(1) & =g_{1} & \end{array}\right.$
(b) $\quad\left\{\begin{array}{rlrl}-u^{\prime \prime}(x)+u^{\prime}(x) & & f(x) & \text { for } x \in(0,1) \\ u(0) & =g_{0} & \\ u^{\prime}(1) & =g_{1}-\alpha_{1} u(1) & \end{array}\right.$

In particular, specify the spaces V_{g}, and V_{0}, the bilinear form $a(\cdot, \cdot)$, and the linear form $\langle F, \cdot\rangle$.
Hint for (b): Perform integration by parts as usual, substitute $u^{\prime}(1)$ due to the Robin boundary condition, and collect the bilinear and linear terms accordingly.

03 Consider the boundary value problem

$$
\begin{align*}
-\left(a(x) u^{\prime}(x)\right)^{\prime} & =1 \quad \text { for } x \in(0,1), \\
u(0) & =0, \tag{1.1}\\
a(1) u^{\prime}(1) & =0,
\end{align*}
$$

where $a(x)=\sqrt{2 x-x^{2}}$. Justify that $u(x)=\sqrt{2 x-x^{2}}$ is a classical solution of (1.1), i. e., $u \in X:=\mathcal{C}^{2}(0,1) \cap \mathcal{C}^{1}(0,1] \cap \mathcal{C}[0,1]$. Furthermore, show that

$$
\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} d x=\infty .
$$

Note: This example shows that $u \notin H^{1}(0,1)$, i. e., u is no weak solution.

04 Let the sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ of functions be defined by

$$
u_{k}(x)= \begin{cases}2 x & \text { for } x \in\left[0, \frac{1}{2}-\frac{1}{2 k}\right], \\ 1-\frac{1}{2 k}-2 k\left(x-\frac{1}{2}\right)^{2} & \text { for } x \in\left(\frac{1}{2}-\frac{1}{2 k}, \frac{1}{2}+\frac{1}{2 k}\right), \\ 2(1-x) & \text { for } x \in\left[\frac{1}{2}+\frac{1}{2 k}, 1\right]\end{cases}
$$

Show that $u_{k} \in \mathcal{C}^{1}[0,1]$. Let u be defined by

$$
u(x)= \begin{cases}2 x & \text { for } x \in\left[0, \frac{1}{2}\right] \\ 2(1-x) & \text { for } x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Find out if $u, u_{k} \in H^{1}(0,1)$ or not and justify your answer. Calculate $\left\|u_{k}-u\right\|_{H^{1}(0,1)}$ (maybe with a little help from Mathematica/Maple) or find a suitable bound for it in order to show that

$$
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{H^{1}(0,1)}=0
$$

Use these results to show that $\left(u_{k}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^{1}[0,1]$ with respect to the H^{1}-norm, but that there exists no limit in $\mathcal{C}^{1}[0,1]$.

05 Show that there exists no function $w \in L^{2}(0,1)$ such that

$$
\varphi\left(\frac{1}{2}\right)=\int_{0}^{1} w(x) \varphi(x) \mathrm{d} x \quad \text { for all } \varphi \in \mathcal{C}_{0}^{\infty}(0,1)
$$

Hint: Consider the sequence of test functions

$$
\varphi_{n}(x):=\left\{\begin{array}{ll}
e^{1-\frac{1}{1-n^{2}(1-2 x)^{2}}} & \text { for }|1-2 x|<\frac{1}{n}, \in \mathcal{C}_{0}^{\infty}(0,1) \\
0 & \text { else }
\end{array} \quad \text { for } n \in \mathbb{N}, n \geq 2\right.
$$

