Numerical methods in continuum mechanics 1 Tutorial sheet 6: Thu 28 05 2015

28. Let $\Omega = (0, 1)^3$ be the unit cube. The domain Ω is subdiveded into two (open) subdomains T_1 and T_2 by some plane. Assume that there is some function $v: \Omega \to \mathbb{R}$ is is piecewise continuously differentiable, i.e., for i = 1 and i = 2

- $v|_{T_i}$ is continuously differentiable and
- there is some continuously differentiable function $v_i: \overline{T}_i \to \mathbb{R}$ such that $v_i|_{T_i} = v|_{T_i}$, where \overline{T}_i is the closure of T_i (extension to the closure).

Show that $v \in H^1(\Omega)$ if and only if $v_1n_1 + v_2n_2 = 0$ on \overline{T}_i , where n_i is the outer normal vector. Show that this is equivalent to $v \in C^1(\Omega)$.

29. Let $\Omega = (0,1)^3$ be the unit cube. The domain Ω is subdiveded into two (open) subdomains T_1 and T_2 by some plane. Assume that there is some function $v: \Omega \to \mathbb{R}^3$ is is piecewise continuously differentiable, i.e., for i = 1 and i = 2

- $v|_{T_i}$ is continuously differentiable and
- there is some continuously differentiable function $v_i: \overline{T}_i \to \mathbb{R}$ such that $v_i|_{T_i} = v|_{T_i}$, where \overline{T}_i is the closure of T_i (extension to the closure).

Show that $v \in H(\operatorname{div}, \Omega)$ if and only if $v_1n_1 + v_2n_2 = 0$ on \overline{T}_i , where n_i is the outer normal vector.

30. Let $\Omega = (0, 1)^3$ be the unit cube. Let curl $u := \nabla \times u = \begin{pmatrix} -\partial_3 v_2 + \partial_2 v_3 \\ \partial_3 v_1 - \partial_1 v_3 \\ -\partial_2 v_1 + \partial_1 v_2 \end{pmatrix}$. Let $H(\operatorname{curl}, \Omega)$ be the space of all functions $w \in [L^2(\Omega)]^3$ with curl $w \in L^2(\Omega)$ with norm

 $\|w\|_{H(\operatorname{curl},\Omega)}^2 := \|w\|_{L^2(\Omega)}^2 + \|\operatorname{curl} w\|_{L^2(\Omega)}^2$

The domain Ω is subdiveded into two (open) subdomains T_1 and T_2 by some plane. Assume that there is some function $v: \Omega \to \mathbb{R}^3$ is is piecewise continuously differentiable, i.e., for i = 1and i = 2

- $v|_{T_i}$ is continuously differentiable and
- there is some continuously differentiable function $v_i: \overline{T}_i \to \mathbb{R}$ such that $v_i|_{T_i} = v|_{T_i}$, where \overline{T}_i is the closure of T_i (extension to the closure).

Show that $v \in H(\text{curl}, \Omega)$ if and only if $v_1 n_1 \times v_2 n_2 = 0$ on \overline{T}_i , where n_i is the outer normal vector.

31. Let $M = (-1,1) \times (-1,1)$ be a macro-element with 9 knodes $x_1 = (-1,-1), x_2 =$ $(0,-1), x_3 = (1,-1), x_4 = (-1,-1), x_5 = (0,0), x_6 = (1,0), x_7 = (-1,1), x_8 = (0,1), x_9 = (0,-1), x_8 = (0$ (1,1). The macro element consists of 4 subelements $T_1 = (-1,0) \times (-1,0), T_2 = (0,1) \times (-1,0),$ $T_3 = (-1, 0) \times (0, 1), T_4 = (0, 1) \times (0, 1).$

The edges of M are denoted in the following way: $S_1 = [x_1, x_3], S_2 = [x_3, x_9], S_3 = [x_9, x_7],$ $S_4 = [x_7, x_1].$

Step 1: Make a picture.

Consider the following finite element space:

$$V_h := \{ v_h \in C(\overline{M}) : v|_{T_i} \in Q_1 \text{ for all } i \in \{1, 2, 3, 4\} \},\$$

where Q_1 is the set of binlinear functions.

Now, construct for a given function $u \in C(\overline{M})$ a function $\Pi_h v \in V_h$ such that

$$[\Pi_h v](x_i) = \frac{1}{area(\Delta_i)} \int_{\Delta_i} v dx \quad \text{for all } i \in \{1, 3, 5, 7, 9\},\$$

where Δ_i is the union of all elements T_j with $x_i \in \overline{T}_j$ AND

$$\int_{S_i} v \mathrm{d}x = \int_{S_i} [\Pi_h v] \mathrm{d}x \qquad \text{for all } i \in \{1, 2, 3, 4\},$$

Hint: Set up the nodal basis of V_h : $(\varphi_1, \ldots, \varphi_9)$. Then every $v_h inV_h$ can be expressed as linear combination of them:

$$v_h = \sum_{i=1}^9 \alpha_i \varphi_i.$$

Determine the α_i 's.

32. Show under the notations and assumptions of Ex. 31 that there exists a constant c > 0 with

$$\|\Pi_h v\|_{H^1(\Omega)} \le c \|v\|_{H^1(\Omega)}.$$
(1)

Hint: Use that the α_i 's can be represented using the terms $\int_{\Delta_i} v dx \leq c \|v\|_{H^1(\Omega)}$ and $\int_{S_i} v dx$. Show and use $\int_{S_i} v dx \leq c \|v\|_{H^1(\Omega)}$ using some trace theorem.

33. Show under the notations and assumptions of Ex. 31 that there exists a constant c > 0 with

$$||v - \Pi_h v||_{H^1(\Omega)} \le c |v|_{H^1(\Omega)}.$$

Hint: Use $||v - \Pi_h v||_{H^1(\Omega)} = ||(v + c) - \Pi_h (v + c)||_{H^1(\Omega)}$, where c is a constant. Then use the triangular inequality, inequality (1) and Poincare inequality.