Numerical methods in continuum mechanics 1
 Tutorial sheet 6: Thu 28052015

28. Let $\Omega=(0,1)^{3}$ be the unit cube. The domain Ω is subdiveded into two (open) subdomains T_{1} and T_{2} by some plane. Assume that there is some function $v: \Omega \rightarrow \mathbb{R}$ is is piecewise continuously differentiable, i.e., for $i=1$ and $i=2$

- $\left.v\right|_{T_{i}}$ is continuously differentiable and
- there is some continuously differentiable function $v_{i}: \bar{T}_{i} \rightarrow \mathbb{R}$ such that $\left.v_{i}\right|_{T_{i}}=\left.v\right|_{T_{i}}$, where \bar{T}_{i} is the closure of T_{i} (extension to the closure).

Show that $v \in H^{1}(\Omega)$ if and only if $v_{1} n_{1}+v_{2} n_{2}=0$ on \bar{T}_{i}, where n_{i} is the outer normal vector. Show that this is equivalent to $v \in C^{1}(\Omega)$.
29. Let $\Omega=(0,1)^{3}$ be the unit cube. The domain Ω is subdiveded into two (open) subdomains T_{1} and T_{2} by some plane. Assume that there is some function $v: \Omega \rightarrow \mathbb{R}^{3}$ is is piecewise continuously differentiable, i.e., for $i=1$ and $i=2$

- $\left.v\right|_{T_{i}}$ is continuously differentiable and
- there is some continuously differentiable function $v_{i}: \bar{T}_{i} \rightarrow \mathbb{R}$ such that $\left.v_{i}\right|_{T_{i}}=\left.v\right|_{T_{i}}$, where \bar{T}_{i} is the closure of T_{i} (extension to the closure).
Show that $v \in H(\operatorname{div}, \Omega)$ if and only if $v_{1} n_{1}+v_{2} n_{2}=0$ on \bar{T}_{i}, where n_{i} is the outer normal vector.

30. Let $\Omega=(0,1)^{3}$ be the unit cube.

Let curl $u:=\nabla \times u=\left(\begin{array}{c}-\partial_{3} v_{2}+\partial_{2} v_{3} \\ \partial_{3} v_{1}-\partial_{1} v_{3} \\ -\partial_{2} v_{1}+\partial_{1} v_{2}\end{array}\right)$.
Let $H(\operatorname{curl}, \Omega)$ be the space of all functions $w \in\left[L^{2}(\Omega)\right]^{3}$ with curl $w \in L^{2}(\Omega)$ with norm $\|w\|_{H(\operatorname{curl}, \Omega)}^{2}:=\|w\|_{L^{2}(\Omega)}^{2}+\|\operatorname{curl} w\|_{L^{2}(\Omega)}^{2}$

The domain Ω is subdiveded into two (open) subdomains T_{1} and T_{2} by some plane. Assume that there is some function $v: \Omega \rightarrow \mathbb{R}^{3}$ is is piecewise continuously differentiable, i.e., for $i=1$ and $i=2$

- $\left.v\right|_{T_{i}}$ is continuously differentiable and
- there is some continuously differentiable function $v_{i}: \bar{T}_{i} \rightarrow \mathbb{R}$ such that $\left.v_{i}\right|_{T_{i}}=\left.v\right|_{T_{i}}$, where \bar{T}_{i} is the closure of T_{i} (extension to the closure).
Show that $v \in H(\operatorname{curl}, \Omega)$ if and only if $v_{1} n_{1} \times v_{2} n_{2}=0$ on \bar{T}_{i}, where n_{i} is the outer normal vector.

31. Let $M=(-1,1) \times(-1,1)$ be a macro-element with 9 knodes $x_{1}=(-1,-1), x_{2}=$ $(0,-1), x_{3}=(1,-1), x_{4}=(-1,-1), x_{5}=(0,0), x_{6}=(1,0), x_{7}=(-1,1), x_{8}=(0,1), x_{9}=$ $(1,1)$. The macro element consists of 4 subelements $T_{1}=(-1,0) \times(-1,0), T_{2}=(0,1) \times(-1,0)$, $T_{3}=(-1,0) \times(0,1), T_{4}=(0,1) \times(0,1)$.

The edges of M are denoted in the following way: $S_{1}=\left[x_{1}, x_{3}\right], S_{2}=\left[x_{3}, x_{9}\right], S_{3}=\left[x_{9}, x_{7}\right]$, $S_{4}=\left[x_{7}, x_{1}\right]$.

Step 1: Make a picture.
Consider the following finite element space:

$$
V_{h}:=\left\{v_{h} \in C(\bar{M}):\left.v\right|_{T_{i}} \in Q_{1} \text { for all } i \in\{1,2,3,4\}\right\}
$$

where Q_{1} is the set of binlinear functions.

Now, construct for a given function $u \in C(\bar{M})$ a function $\Pi_{h} v \in V_{h}$ such that

$$
\left[\Pi_{h} v\right]\left(x_{i}\right)=\frac{1}{\operatorname{area}\left(\Delta_{i}\right)} \int_{\Delta_{i}} v \mathrm{~d} x \quad \text { for all } i \in\{1,3,5,7,9\}
$$

where Δ_{i} is the union of all elements T_{j} with $x_{i} \in \bar{T}_{j}$ AND

$$
\int_{S_{i}} v \mathrm{~d} x=\int_{S_{i}}\left[\Pi_{h} v\right] \mathrm{d} x \quad \text { for all } i \in\{1,2,3,4\}
$$

Hint: Set up the nodal basis of $V_{h}:\left(\varphi_{1}, \ldots, \varphi_{9}\right)$. Then every $v_{h} i n V_{h}$ can be expressed as linear combination of them:

$$
v_{h}=\sum_{i=1}^{9} \alpha_{i} \varphi_{i}
$$

Determine the α_{i} 's.
32. Show under the notations and assumptions of Ex. 31 that there exists a constant $c>0$ with

$$
\begin{equation*}
\left\|\Pi_{h} v\right\|_{H^{1}(\Omega)} \leq c\|v\|_{H^{1}(\Omega)} \tag{1}
\end{equation*}
$$

Hint: Use that the α_{i} 's can be represented using the terms $\int_{\Delta_{i}} v \mathrm{~d} x \leq c\|v\|_{H^{1}(\Omega)}$ and $\int_{S_{i}} v \mathrm{~d} x$. Show and use $\int_{S_{i}} v \mathrm{~d} x \leq c\|v\|_{H^{1}(\Omega)}$ using some trace theorem.
33. Show under the notations and assumptions of Ex. 31 that there exists a constant $c>0$ with

$$
\left\|v-\Pi_{h} v\right\|_{H^{1}(\Omega)} \leq c|v|_{H^{1}(\Omega)}
$$

Hint: Use $\left\|v-\Pi_{h} v\right\|_{H^{1}(\Omega)}=\left\|(v+c)-\Pi_{h}(v+c)\right\|_{H^{1}(\Omega)}$, where c is a constant. Then use the triangular inequality, inequality (1) and Poincare inequality.

