Numerical methods in continuum mechanics 1
 Tutorial sheet 5: Thu 21052015

Remark: Each of the exercises can be completed even if one of the preceeding exercises has not been completed!
21. Let $\Omega \subseteq \mathbb{R}^{d}$ be an open and bounded set with Lipschitz-continuous boundary $\partial \Omega$. Show that for all $v \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{d}\right)$

$$
\int_{\Omega} q \operatorname{div} v \mathrm{~d} x=\int_{\partial \Omega} v \cdot n q \mathrm{~d} s-\int_{\Omega} v \cdot \operatorname{grad} q \mathrm{~d} x
$$

holds for all $q \in C^{1}(\bar{\Omega})$.
Now, show that the operator $\gamma_{n}: C^{1}\left(\bar{\Omega}, \mathbb{R}^{d}\right) \rightarrow H^{*}$, given by

$$
\left\langle\gamma_{n} v,\left.q\right|_{\partial \Omega}\right\rangle=\int_{\partial \Omega} v \cdot n q \mathrm{~d} s
$$

with $H=\left\{\left.q\right|_{\partial \Omega}: q \in C^{1}\right\}$,

$$
H^{*}=\{l: l \text { bounded linear functional } H \rightarrow \mathbb{R}\}
$$

with standard dual norm

$$
\|l\|_{H^{*}}=\sup _{q \in C^{1}} \frac{\langle l, q\rangle}{\|q\|_{1}}
$$

is linear and bounded:

$$
\left\|\gamma_{n} v\right\|_{H^{*}} \leq c\|v\|_{H(d i v, \Omega)} .
$$

This shows that there is a continuous extension of the operator γ_{n} to $H(\operatorname{div}, \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$, where $H^{1 / 2}(\partial \Omega)=\left\{\gamma q: q \in H^{1}(\Omega)\right\}$ and $H^{-1 / 2}(\partial \Omega)=\left[H^{1 / 2}(\partial \Omega)\right]^{*}$ and $\gamma: H^{1}(\Omega) \rightarrow H^{1 / 2}(\partial \Omega$ is the (standard) trace operator.
22. Let V and P be Hilbert spaces. Let $A: V \rightarrow V^{*}, B: P \rightarrow V^{*}$ and $C: P \rightarrow P^{*}$ be bounded linear operators. Note that $B^{*}: V \rightarrow P^{*}$. Let

$$
\mathcal{A}=\left(\begin{array}{cc}
A & B^{*} \\
B & -C
\end{array}\right), \quad x=\binom{v}{p}
$$

and $\|x\|_{X}^{2}=\|v\|_{V}^{2}+\|p\|_{P}^{2}$. Assume that

$$
\underline{c}_{X}\|x\|_{X} \leq\|\mathcal{A} x\|_{X^{*}} \leq \bar{c}_{X}\|x\|_{X}
$$

for all $x \in X=V \times P$. Show that

$$
\underline{c}_{X}^{2}\|v\|_{V}^{2} \leq\|A v\|_{V^{*}}^{2}+\left\|B^{*} v\right\|_{P^{*}}^{2} \leq \bar{c}_{X}^{2}\|v\|_{V}^{2}
$$

and

$$
\underline{c}_{X}^{2}\|p\|_{P}^{2} \leq\|B p\|_{V^{*}}^{2}+\|C p\|_{P^{*}}^{2} \leq \bar{c}_{X}^{2}\|p\|_{P}^{2}
$$

for all $v \in V$ and all $p \in P$.
Hint: Choose $x=(v, 0)$ and $x=(0, p)$.
23. Having the notations of the last exercise. Now, assume that

$$
\begin{equation*}
\underline{c}_{V}^{2}\|v\|_{V}^{2} \leq\|A v\|_{V^{*}}^{2}+\left\|B^{*} v\right\|_{P^{*}}^{2} \leq \bar{c}_{V}^{2}\|v\|_{V}^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{c}_{P}^{2}\|p\|_{P}^{2} \leq\|B p\|_{V^{*}}^{2}+\|C p\|_{P^{*}}^{2} \leq \bar{c}_{P}^{2}\|p\|_{P}^{2} \tag{2}
\end{equation*}
$$

for all $v \in V$ and all $p \in P$. Show that there is a constant \bar{c}_{X} such that

$$
\|\mathcal{A} x\|_{X^{*}} \leq \bar{c}_{X}\|x\|_{X}
$$

for all $x \in X$. How should \bar{c}_{X} be chosen?
24. Having the assumptions of exercise 23. Show that

$$
\begin{equation*}
\|\mathcal{A} x\|_{X^{*}} \geq(\eta-\xi)\|x\|_{X} \tag{3}
\end{equation*}
$$

where

$$
\xi=\frac{\sqrt{\|A v\|_{V^{*}}^{2}+\|C p\|_{P^{*}}^{2}}}{\|(v, p)\|_{X}} \quad \text { and } \quad \eta=\frac{\sqrt{\left\|B^{*} v\right\|_{P^{*}}^{2}+\|B p\|_{V^{*}}^{2}}}{\|(v, p)\|_{X}} .
$$

25. Having the assumptions of exercise 23. Assume that the operators A and C are symmetric and coercive, i.e., $\langle A u, v\rangle=a(u, v)=a(v, u)=\langle A v, u\rangle$ and $a(u, u) \geq 0$ (and the same for C). Show that

$$
a(v, v)+c(p, p) \geq \frac{\sqrt{2}}{\bar{c}_{X}} \xi^{2}\|(v, p)\|_{X}
$$

and consequencly

$$
\begin{equation*}
\|\mathcal{A} x\|_{X^{*}} \geq \frac{\sqrt{2}}{\bar{c}_{X}} \xi^{2}\|x\|_{X} \tag{4}
\end{equation*}
$$

where ξ is defined as in exercise 24 .
26. Having the assumptions of exercise 23 . Assume that the operators A and C are symmetric and coercive. Show that

$$
\xi^{2}+\eta^{2} \geq \min \left\{\underline{c}_{V}^{2}, \underline{c}_{P}^{2}\right\}
$$

where ξ and η are defined as in exercise 24. Use (3) and (4) and observee

$$
\|\mathcal{A} x\|_{X^{*}} \geq \max \left\{\eta-\xi, \frac{\sqrt{2}}{\bar{c}_{X}} \xi^{2}\right\}\|x\|_{X}
$$

Use these two results to show that there is a constant \underline{c}_{X}, only depending on $\bar{c}_{X}, \underline{c}_{V}$ and \underline{c}_{P} such that

$$
\|\mathcal{A} x\|_{X^{*}} \geq \underline{c}_{X}\|x\|_{X}
$$

27. Use the theorem that was shown in the exercises 23-26, i.e., that

$$
\underline{c}_{X}\|x\|_{X} \leq\|\mathcal{A} x\|_{X^{*}} \leq \bar{c}_{X}\|x\|_{X}
$$

if (1) and (2) is satisfied.
Use this theorem to show existence and uniqueness of the problem in Section 1.2.1 (Incompressible and Almost Incompressible Materials) for the general case $\lambda<\infty$ having the function spaces V and $P=Q$ as given in that section.

