Numerical methods in continuum mechanics 1 Tutorial sheet 4: Thu 30042015

15 (Gradient matrix). Let $\Omega \subseteq \mathbb{R}^{2}$ with a triangular subdivision of Ω into $\left\{\Omega_{i}\right\}$.
Define the gradient matrix $D:=\left(\left(\varphi^{(j)}, \nabla \psi^{(k)}\right)_{L^{2}(\Omega)}\right)_{k=1, \ldots, n ; l=1, \ldots, m}$, with $V=\operatorname{span}\left\{\varphi^{(j)}\right\} \subseteq$ $H^{1}(\Omega)$ and $P=\operatorname{span}\left\{\psi^{(k)}\right\} \subseteq\left[L^{2}(\Omega)\right]^{2}$. So, D is representing the off-diagonal parts of the discretization of the Stokes problem.

Let K be the standard stiffness matrix on V and M_{p} the standard mass matrix on P.
Show:

- $D M_{p}^{-1} D^{T}=K$ if V is the Courant element (piecewise linear, globally continuous) and P is piecewiese constant.
- $D M_{p}^{-1} D^{T} \neq K$ if both, V and P are the Courant element (find a counter example).

Hint for the second statement: Use $\Omega=(0,1)^{2}$ and subdivide it into two triangles.

16 (discrete Babuska-Aziz). Assume the notations and conditions of the theorem of BabuskaAziz and let $F \in Y^{*}$. Then the variational problem

$$
\text { find } x \in X \text { such that } \quad \mathrm{a}(x, y)=\langle F, y\rangle \quad \text { for all } y \in Y
$$

has a unique solution. Let $X_{h} \subseteq X$ and $Y_{h} \subseteq Y$ be finite-dimensional subspaces. Assume that

- (2') There is a constant $\tilde{\mu}_{1}>0$ such that $\inf _{x_{h} \in X_{h}} \sup _{y_{h} \in Y_{h}} \frac{\mathrm{a}\left(x_{h}, y_{h}\right)}{\left\|x_{h}\right\|_{X}\left\|y_{h}\right\|_{Y}} \geq \tilde{\mu}_{1}>0$.
- (3') For each $y_{h} \in Y_{h} \backslash\{0\}$, there is a $x_{h} \in X_{h}$ such that a $\left(x_{h}, y_{h}\right) \neq 0$.

Show that the variational problem

$$
\text { find } x_{h} \in_{h} X \text { s.t. } \quad \mathrm{a}\left(x_{h}, y_{h}\right)=\left\langle F, y_{h}\right\rangle \quad \text { for all } y_{h} \in Y_{h} .
$$

has a unique solution.

17 (Error estimate). Show that the following estimate is satisfied for the discretization error in 16.:

$$
\left\|x-x_{h}\right\|_{X} \leq\left(1+\frac{\mu_{2}}{\tilde{\mu}_{1}}\right) \inf _{w_{h} \in X_{h}}\left\|x-w_{h}\right\|_{X}
$$

Hint: Use $\left\|x-x_{h}\right\|_{X} \leq\left\|x-w_{h}\right\|_{X}+\left\|w_{h}-x_{h}\right\|_{X}$. Show and use $\mathrm{a}\left(x_{h}-w_{h}, y_{h}\right)=\mathrm{a}\left(x-w_{h}, y_{h}\right)$.

18 (Weak gradient). Let $\Omega=(0,1)$. Show that

$$
\|\operatorname{grad} p\|_{H^{-1}(\Omega)}=\|p\|_{L^{2}(\Omega)}
$$

for all $p \in L_{0}^{2}(\Omega)$.
Here, $\operatorname{grad} p \in H^{-1}(\Omega)=\left[H_{0}^{1}(\Omega)\right]^{*}$ is given by $\langle\operatorname{grad} p, q\rangle=-\int_{0}^{1} p q^{\prime} \mathrm{d} x$. The norm is given by $\|\cdot\|_{H^{-1}(\Omega)}=\|\cdot\|_{\left[H_{0}^{1}(\Omega)\right]^{*}}=\sup _{q \in H_{0}^{1}(\Omega)} \frac{\langle\cdot, q\rangle}{|q|_{H_{0}^{1}(\Omega)}}$

Hint: You may assume that p is a smooth function.

19 (Weak divergence). Let $\Omega \in \mathbb{R}^{d}$ be an open and bounded set. Let $u \in\left[L^{2}(\Omega)\right]^{d}$. If a function $w \in L^{2}(\Omega)$ exists such that

$$
\int_{\Omega} w v \mathrm{~d} x=-\int_{\Omega} u \cdot \operatorname{grad} v \mathrm{~d} x
$$

for all $v \in H^{1}(\Omega)$, then we call w the weak divergence of v and we write $w=\operatorname{div} u$. One defines now

$$
H(\operatorname{div}, \Omega)=\left\{v \in\left[L^{2}(\Omega)\right]^{d}: \operatorname{div} v \in L^{2}(\Omega)\right\}
$$

This function space with the scalar product $(u, v)_{H(\operatorname{div}, \Omega)}:=(u, v)_{L^{2}(\Omega)}+(\operatorname{div} u, \operatorname{div} v)_{L^{2}(\Omega)}$ is a Hilbert space.

Let $f \in L^{2}(\Omega)$. Using Lax-Milgram and Friedrichs' inequality, we obtain that there is a unique solution $u \in H_{0}^{1}(\Omega)$ of the problem
find $u \in H_{0}^{1}(\Omega)$ such that $\quad \int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \mathrm{~d} x=\int_{\Omega} f \cdot v \mathrm{~d} x \quad$ for all $v \in H_{0}^{1}(\Omega)$
Since $u \in H_{0}^{1}(\Omega)$, we have $\operatorname{grad} u \in L^{2}(\Omega)$.
Show:

- $\operatorname{grad} u \in H(\operatorname{div}, \Omega)$
- div $\operatorname{grad} u=-f$

20 (Inf sup condition involving the weak divergence). Let $\Omega \in \mathbb{R}^{d}$ be an open and bounded set.

Show that there is a constant $\beta_{1}>0$ such that

$$
\inf _{q \in L^{2}(\Omega)} \sup _{v \in H(\operatorname{div}, \Omega)} \frac{(q, \operatorname{div} v)_{L^{2}(\Omega)}}{\|q\|_{L^{2}(\Omega)}\|v\|_{H(\operatorname{div}, \Omega)}} \geq \beta_{1} .
$$

Hint: Let q be abitrarily but fixed. Choose $v=-\operatorname{grad} w$, where $w \in H_{0}^{1}(\Omega)$ solves
find $w \in H_{0}^{1}(\Omega)$ such that $\quad(\operatorname{grad} w, \operatorname{grad} \tilde{w})_{L^{2}(\Omega)}=(q, \tilde{w})_{L^{2}(\Omega)} \quad$ for all $\tilde{w} \in H_{0}^{1}(\Omega)$ and observe that $\operatorname{div} v=q$. Use what you (should) have shown in exercise 19.

