Numerical methods in continuum mechanics 1 Tutorial sheet 3: Thu 16042015

10 (Cylindric domain). Let $\Omega=\omega \times(-d, d) \subseteq \Omega^{3}$ with $d>0$. Consider the problem:

$$
\begin{array}{rlr}
-\operatorname{div} \sigma & =f & \text { in } \Omega \\
\sigma & =\lambda \operatorname{tr} \epsilon(u) I+2 \mu \epsilon(u) & \operatorname{in} \Omega \\
u_{n}=\sigma_{T} & =0 & \text { on } \omega \times\{-d, d\} \\
u & =u_{D} & \\
\sigma n & =t_{N} & \text { on } \gamma_{D} \times(-d, d) \\
& \text { on } \gamma_{N} \times(-d, d),
\end{array}
$$

where $\gamma_{D} \cup \gamma_{N}=\partial \omega$ and

$$
v_{n}:=v \cdot n, \quad v_{t}:=v-v_{n} n, \quad \sigma_{n}:=\sigma n \cdot n, \quad \sigma_{t}:=\sigma n-\sigma_{n} n
$$

a. This can be rewritten as variational formulation: Find $u \in V_{g}$ such that

$$
\begin{equation*}
a(u, v)=\langle F, v\rangle \text { for all } v \in V_{0} \tag{1}
\end{equation*}
$$

Determine the spaces V_{0}, V_{g}, the bilinear form a and the linear functional F.
Hint: Show and use $\sigma n \cdot v=\sigma_{n} v_{n}+\sigma_{t} \cdot v_{t}$.
b. Assume that

- $f\left(x_{1}, x_{2}, x_{3}\right)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right), 0\right)$,
- $u_{D}\left(x_{1}, x_{2}, x_{3}\right)=\left(u_{D, 1}\left(x_{1}, x_{2}\right), u_{D, 2}\left(x_{1}, x_{2}\right), 0\right)$ and
- $t_{N}\left(x_{1}, x_{2}, x_{3}\right)=\left(t_{N, 1}\left(x_{1}, x_{2}\right), t_{N, 2}\left(x_{1}, x_{2}\right), 0\right)$.

Then it is reasonable to assume that also the solution u is essentialy 2 dimensional, i.e.: $u\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right), 0\right)$.

Derive a variational equation: Find $\tilde{u} \in \tilde{V}_{g}$ such that

$$
\begin{equation*}
\tilde{a}(\tilde{u}, \tilde{v})=\langle\tilde{F}, \tilde{v}\rangle, \text { for all } \tilde{v} \in \tilde{V}_{0} \tag{2}
\end{equation*}
$$

where $\tilde{u}\left(x_{1}, x_{2}\right)=\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right)\right)$ and $\tilde{v}\left(x_{1}, x_{2}\right)=\left(v_{1}\left(x_{1}, x_{2}\right), v_{2}\left(x_{1}, x_{2}\right)\right)$. Determine the spaces $\tilde{V}_{0}, \tilde{V}_{g}$, the bilinear form \tilde{a} and the linear functional \tilde{F}.
11. Show that, if $\tilde{u}\left(x_{1}, x_{2}\right)=\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right)\right)$ solves (2), then $u\left(x_{1}, x_{2}, x_{3}\right)=\left(u_{1}\left(x_{1}, x_{2}\right), u_{2}\left(x_{1}, x_{2}\right), 0\right)$ solves (1).

Hint: Show that each $v \in V_{0}$ can be expressed as

$$
v\left(x_{1}, x_{2}, x_{3}\right)=\left(v_{1}\left(x_{1}, x_{2}\right), v_{2}\left(x_{1}, x_{2}\right), 0\right)+w
$$

where $\int_{-d}^{d} w_{1}(x) \mathrm{d} x_{3}=0$ and $\int_{-d}^{d} w_{2}(x) \mathrm{d} x_{3}=0$. Then show that $a(u, w)=0$ and $\langle F, w\rangle=0$.
12 (Closed range theorem for finite dimensional space). Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Show that

$$
A x=f
$$

has a solution if and only if $y^{T} f=0$ for all $y \in Z^{\perp}:=\left\{y: A^{T} y=0\right\}$.
13 (Well posedness of mass matrix). Let $\Omega \subseteq \mathbb{R}^{2}$ with a triangular subdivision of Ω into $\left\{\Omega_{i}\right\}$. Let $M_{i}=\left(\left(\varphi^{(k)}, \varphi^{(l)}\right)_{L^{2}\left(\Omega_{i}\right)}\right)_{k, l=1}^{n}$ be the mass matrices on the elements Ω_{i} and let $M=\left(\left(\varphi^{(k)}, \varphi^{(l)}\right)_{L^{2}(\Omega)}\right)_{k, l=1}^{n}=\sum_{i=1}^{N} M_{i}$ be the mass matrix on Ω. Show that

$$
\frac{\lambda_{\max }(M)}{\lambda_{\min }(M)} \leq C_{1} \max _{i=1 \ldots N} \frac{\lambda_{\max }\left(M_{i}\right)}{\lambda_{\min }\left(M_{i}\right)} \leq C_{2}
$$

where the constants C_{1} and C_{2} are independent of the grid size.
Discuss: Which conditions do you need? How do C_{1} and C_{2} look like?
Hint: Use the Rayleigh-quotients $\lambda_{\max }(M)=\sup _{x} \frac{x^{T} M x}{x^{T} x}$ and $\lambda_{\min }(M)=\inf _{x} \frac{x^{T} M x}{x^{T} x}$ and the fact that each node only contributes to finitely many elements.

14 (h dependence of the stiffness matrix). Let $\Omega \subseteq \mathbb{R}^{2}$ with a triangular subdivision of Ω into $\left\{\Omega_{i}\right\}$. Let $K_{i}=\left(\left(\varphi^{(k)}, \varphi^{(l)}\right)_{H^{1}\left(\Omega_{i}\right)}\right)_{k, l=1}^{n}=M_{i}+\left(\left(\nabla \varphi^{(k)}, \nabla \varphi^{(l)}\right)_{L^{2}\left(\Omega_{i}\right)}\right)_{k, l=1}^{n}$ be the stiffness matrices on the elements Ω_{i} and let the matrix $K=\left(\left(\varphi^{(k)}, \varphi^{(l)}\right)_{H^{1}(\Omega)}\right)_{k, l=1}^{n}=$ $M+\left(\left(\nabla \varphi^{(k)}, \nabla \varphi^{(l)}\right)_{L^{2}(\Omega)}\right)_{k, l=1}^{n}=\sum_{i=1}^{N} K_{i}$ be the stiffness matrix on Ω. Show that

$$
\frac{\lambda_{\max }(K)}{\lambda_{\min }(K)} \leq C_{1} \max _{i=1 \ldots N} \frac{\lambda_{\max }\left(K_{i}\right)}{\lambda_{\min }\left(K_{i}\right)} \leq C_{2} h^{-2},
$$

where the constants C_{1} and C_{2} are independent of the grid size h.
Discuss: Which conditions do you need? How do C_{1} and C_{2} look like?

15 (Gradient matrix). Let $\Omega \subseteq \mathbb{R}^{2}$ with a triangular subdivision of Ω into $\left\{\Omega_{i}\right\}$.
Define the gradient matrix $D:=\left(\left(\varphi^{(j)}, \nabla \psi^{(k)}\right)_{L^{2}(\Omega)}\right)_{k=1, \ldots, n ; l=1, \ldots, m}$, with $V=\operatorname{span}\left\{\varphi^{(j)}\right\} \subseteq$ $H^{1}(\Omega)$ and $P=\operatorname{span}\left\{\psi^{(k)}\right\} \subseteq\left[L^{2}(\Omega)\right]^{2}$. So, D is representing the off-diagonal parts of the discretization of the Stokes problem.

Let K be the standard stiffness matrix on V and M_{p} the standard mass matrix on P.
Show:

- $D M_{p}{ }^{-1} D^{T}=K$ if V is the Courant element (piecewise linear, globally continuous) and P is piecewiese constant.
- $D M_{p}^{-1} D^{T} \neq K$ if both, V and P are the Courant element (find a counter example).

Hint for the second statement: Use $\Omega=(0,1)^{2}$ and subdivide it into two triangles.

