Numerical methods in continuum mechanics 1

Tutorial sheet 3: Thu 16 04 2015

10 (Cylindric domain). Let Q = w x (—d,d) C Q3 with d > 0. Consider the problem:

—dive = f in

o = Mre(u)l + 2pe(u) in

Up =07 =0 on w x {—d,d}
U =up on vp X (—d,d)

on =ty on vy X (—d,d),

where v7p U~y = 0w and
Up =0 N, Vg 1=V — Up N, Op i=0n-n, Ot := 0N — OuN.
a. This can be rewritten as variational formulation: Find u € V, such that
a(u,v) = (F,v) for all v € V. (1)

Determine the spaces Vp, V;, the bilinear form a and the linear functional F'.
Hint: Show and use on - v = 0,v, + 0t - V;.
b. Assume that

o f(w1,22,73) = (fi(w1,22), f2(71,22),0),
[ ] uD(xl,ifz,ZL'g) = (UD11($1,£E2)7UD72(.’E1,.’£2),O) and
o tn(z1,22,23) = (tn1(x1, 22), tn,2(x1, 22), 0).

Then it is reasonable to assume that also the solution w is essentialy 2 dimensional, i.e.: u(x1, x2, x3) =
(u1(z1, w2), uz(21,72),0). R
Derive a variational equation: Find @ € V; such that

a(@,d) = (F,3), for all € Vg, (2)
where (21, 72) = (u1(21,22), u2(v1,22)) and O(z1,22) = (v1(71,22), v2(71,72)). Determine the

spaces Vo, Vg, the bilinear form @ and the linear functional F.

11. Show that, if 4(zq, z2) = (u1(z1, 22), u2(z1, 22)) solves (2), then
w(xy, o, x3) = (uy(x1, 22), us(x1, 2),0) solves (1).
Hint: Show that each v € V) can be expressed as

v(21, 72, 23) = (vi(21,72),v2(21,72),0) + w,

where fild wi(z) deg = 0 and f:id ws(x) deg = 0. Then show that a(u, w) = 0 and (F,w) = 0.

12 (Closed range theorem for finite dimensional space). Let A € R™*" be a matrix.
Show that
Ar=f

has a solution if and only if y7f =0 for all y € Z+ := {y : ATy =0}.

13 (Well posedness of mass matrix). Let  C R? with a triangular subdivision of
into {€%}. Let M; = ((¢®,0")12q,)),—; be the mass matrices on the elements {; and let

M = (™), (p(l))L2(Q))Z7l:1 = Zfil M; be the mass matrix on 2. Show that
)\maz(Mi)

<C L -
=210 Amin(M;) — 2

)\maa: (M)
/\min (M)



where the constants C; and Cy are independent of the grid size.
Discuss: Which conditions do you need? How do C; and Cy look like?
T T
Hint: Use the Rayleigh-quotients Ap,q. (M) = sup, wz%w and Apin (M) = inf, "Emé‘iw and the
fact that each node only contributes to finitely many elements.

14 (h dependence of the stiffness matrix). Let Q@ C R? with a triangular subdivi-
sion of Q into {;}. Let K; = ((@(k),@(l))Hl(Qi))szl = M; + ((V@(k),VSD(Z))LZ(Qi))zJ:l be
the stiffness matrices on the elements €; and let the matrix K = ((@(k),@(l))Hl(Q))Z,lzl =
M+ (VR Vgo(l))La(Q))Z’l:l = Zf\il K; be the stiffness matrix on 2. Show that

)\maz(K) Scl max )\maw(Ki)

Amaz (K) Lmarl 2 < Oyh 2
Amin (K) i=1..N Apin (K) ? 7

where the constants C; and Cy are independent of the grid size h.
Discuss: Which conditions do you need? How do C; and Cy look like?

15 (Gradient matrix). Let Q C R? with a triangular subdivision of € into {{;}.

Define the gradient matrix D := ((go(j),V¢(k))Lz(Q))kzl,__ﬂn;l:l,_“’m, with V = span{cp(j)} C
H'(Q) and P = span{y*)} C [L?(Q)]2. So, D is representing the off-diagonal parts of the discreti-
zation of the Stokes problem.

Let K be the standard stiffness matrix on V' and M, the standard mass matrix on P.
Show:

e DM, 'DT = K if V is the Courant element (piecewise linear, globally continuous) and P is
piecewiese constant.

e DM, 'DT = K if both, V and P are the Courant element (find a counter example).

Hint for the second statement: Use Q = (0,1)? and subdivide it into two triangles.



