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10 (Cylindric domain). Let Ω = ω × (−d, d) ⊆ Ω3 with d > 0. Consider the problem:

−divσ = f in Ω

σ = λtrε(u)I + 2µε(u) in Ω

un = σT = 0 on ω × {−d, d}
u = uD on γD × (−d, d)

σn = tN on γN × (−d, d),

where γD ∪ γN = ∂ω and

vn := v · n, vt := v − vnn, σn := σn · n, σt := σn− σnn.

a. This can be rewritten as variational formulation: Find u ∈ Vg such that

a(u, v) = 〈F, v〉 for all v ∈ V0. (1)

Determine the spaces V0, Vg, the bilinear form a and the linear functional F .
Hint: Show and use σn · v = σnvn + σt · vt.
b. Assume that

• f(x1, x2, x3) = (f1(x1, x2), f2(x1, x2), 0),

• uD(x1, x2, x3) = (uD,1(x1, x2), uD,2(x1, x2), 0) and

• tN (x1, x2, x3) = (tN,1(x1, x2), tN,2(x1, x2), 0).

Then it is reasonable to assume that also the solution u is essentialy 2 dimensional, i.e.: u(x1, x2, x3) =
(u1(x1, x2), u2(x1, x2), 0).

Derive a variational equation: Find ũ ∈ Ṽg such that

ã(ũ, ṽ) = 〈F̃ , ṽ〉, for all ṽ ∈ Ṽ0, (2)

where ũ(x1, x2) = (u1(x1, x2), u2(x1, x2)) and ṽ(x1, x2) = (v1(x1, x2), v2(x1, x2)). Determine the
spaces Ṽ0, Ṽg, the bilinear form ã and the linear functional F̃ .

11. Show that, if ũ(x1, x2) = (u1(x1, x2), u2(x1, x2)) solves (2), then
u(x1, x2, x3) = (u1(x1, x2), u2(x1, x2), 0) solves (1).

Hint: Show that each v ∈ V0 can be expressed as

v(x1, x2, x3) = (v1(x1, x2), v2(x1, x2), 0) + w,

where
∫ d

−d w1(x) dx3 = 0 and
∫ d

−d w2(x) dx3 = 0. Then show that a(u,w) = 0 and 〈F,w〉 = 0.

12 (Closed range theorem for finite dimensional space). Let A ∈ Rm×n be a matrix.
Show that

Ax = f

has a solution if and only if yT f = 0 for all y ∈ Z⊥ := {y : AT y = 0}.

13 (Well posedness of mass matrix). Let Ω ⊆ R2 with a triangular subdivision of Ω
into {Ωi}. Let Mi = ((ϕ(k), ϕ(l))L2(Ωi))

n
k,l=1 be the mass matrices on the elements Ωi and let

M = ((ϕ(k), ϕ(l))L2(Ω))
n
k,l=1 =

∑N
i=1Mi be the mass matrix on Ω. Show that

λmax(M)

λmin(M)
≤ C1 max

i=1...N

λmax(Mi)

λmin(Mi)
≤ C2,
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where the constants C1 and C2 are independent of the grid size.
Discuss: Which conditions do you need? How do C1 and C2 look like?

Hint: Use the Rayleigh-quotients λmax(M) = supx
xTMx
xT x

and λmin(M) = infx
xTMx
xT x

and the
fact that each node only contributes to finitely many elements.

14 (h dependence of the stiffness matrix). Let Ω ⊆ R2 with a triangular subdivi-
sion of Ω into {Ωi}. Let Ki = ((ϕ(k), ϕ(l))H1(Ωi))

n
k,l=1 = Mi + ((∇ϕ(k),∇ϕ(l))L2(Ωi))

n
k,l=1 be

the stiffness matrices on the elements Ωi and let the matrix K = ((ϕ(k), ϕ(l))H1(Ω))
n
k,l=1 =

M + ((∇ϕ(k),∇ϕ(l))L2(Ω))
n
k,l=1 =

∑N
i=1Ki be the stiffness matrix on Ω. Show that

λmax(K)

λmin(K)
≤ C1 max

i=1...N

λmax(Ki)

λmin(Ki)
≤ C2h

−2,

where the constants C1 and C2 are independent of the grid size h.
Discuss: Which conditions do you need? How do C1 and C2 look like?

15 (Gradient matrix). Let Ω ⊆ R2 with a triangular subdivision of Ω into {Ωi}.
Define the gradient matrix D := ((ϕ(j),∇ψ(k))L2(Ω))k=1,...,n;l=1,...,m, with V = span{ϕ(j)} ⊆

H1(Ω) and P = span{ψ(k)} ⊆ [L2(Ω)]2. So, D is representing the off-diagonal parts of the discreti-
zation of the Stokes problem.

Let K be the standard stiffness matrix on V and Mp the standard mass matrix on P .
Show:

• DMp
−1DT = K if V is the Courant element (piecewise linear, globally continuous) and P is

piecewiese constant.

• DMp
−1DT 6= K if both, V and P are the Courant element (find a counter example).

Hint for the second statement: Use Ω = (0, 1)2 and subdivide it into two triangles.
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