Numerical methods in continuum mechanics 1 Tutorial sheet 2: Thu 26 03 2015

4. Show that the Navier Stokes equations in convective form,

$$\frac{\partial v}{\partial t} - \Delta v + v \cdot \nabla v + \nabla p = f$$

div $v = 0$.

are equivalent to the Navier Stokes equations in the conservative form

$$\frac{\partial v}{\partial t} - \Delta v + \operatorname{div} (vv^T) + \nabla p = f$$

div $v = 0$,

or in rotation form

$$\frac{\partial v}{\partial t} - \Delta v + (\nabla \times v) \times v + \nabla P = f$$

div $v = 0$

with $P = p + \frac{1}{2}v^2$. 5. Let $\Omega := (0, L) \times (0, H)$ for L > H > 0 be a rectangular domain. Compute a lower bound for

$$\sup_{v \in H^1(\Omega)^2} \frac{|v|_1^2}{\|\epsilon(v)\|_0^2},$$

by choosing $v(x, y) = (2xy, -x^2)$. Is this $v \in H^1(\Omega)^2$? Why does this lower bound cause problems? **6.** Have $A : B = \sum_{i,j} a_{i,j} b_{i,j}$ and $\operatorname{tr}(A) = \sum_i a_{i,i}$ and $\operatorname{dev}(A) = A - \frac{1}{n} \operatorname{tr}(A)I$. Show that

$$A: B = \operatorname{tr}(A^T B),$$
$$\operatorname{tr}(ABA^{-1}) = \operatorname{tr}(B)$$

tr(devA) = 0

and

holds for all matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$.

7. Consider the linearized elasticity problem: Find $u \in [H^1(\Omega)]^3$ such that

$$\int_{\Omega} C\epsilon(u) : \epsilon(v) dx = \int_{\Omega} f \cdot v dx + \int_{\Gamma} t_N \cdot v ds \text{ for all } v \in [H^1(\Omega)]^3$$
(1)

Assume that there is a solution $u \in [H^1(\Omega)]^3$. Show that the right-hand side must satisfy the following conditions:

$$\int_{\Omega} f dx + \int_{\Gamma} t_N ds = 0 \quad \text{and} \quad \int_{\Omega} x \times f dx + \int_{\Gamma} x \times t_N ds = 0.$$
(2)

8. Show that each function $v \in [H^1(\Omega)]^3$ can be rewritten as

 $v = \hat{v} + v_0,$

where $\hat{v} \in \hat{H}(\Omega) := \{ v \in H^1(\Omega)^3 : \int_{\Omega} v \, \mathrm{d}x = 0, \int_{\Omega} \operatorname{curl} v \, \mathrm{d}x = 0 \}$ and $v_0 \in RM$ (cf. Lemma 2.4) and Remark 2 on page 15).

9. You know that the problem, find $u \in \hat{H}(\Omega)$ such that

$$\int_{\Omega} C\epsilon(u) : \epsilon(v) dx = \int_{\Omega} f \cdot v dx + \int_{\Gamma} t_N \cdot v ds \text{ for all } v \in \hat{H}(\Omega),$$

has a unique solution.

Show that, assuming (2), the solution of this problem, say u^* , also satisfies (1). Show moreover that (1) is also satisfied for $u^* + u_0$, no matter how $u_0 \in RM$ is chosen.