Numerical methods in continuum mechanics 1
 Tutorial sheet 2: Thu 26032015

4. Show that the Navier Stokes equations in convective form,

$$
\begin{aligned}
\frac{\partial v}{\partial t}-\Delta v+v \cdot \nabla v+\nabla p & =f \\
\operatorname{div} v & =0
\end{aligned}
$$

are equivalent to the Navier Stokes equations in the conservative form

$$
\begin{aligned}
\frac{\partial v}{\partial t}-\Delta v+\operatorname{div}\left(v v^{T}\right)+\nabla p & =f \\
\operatorname{div} v & =0
\end{aligned}
$$

or in rotation form

$$
\begin{aligned}
\frac{\partial v}{\partial t}-\Delta v+(\nabla \times v) \times v+\nabla P & =f \\
\operatorname{div} v & =0
\end{aligned}
$$

with $P=p+\frac{1}{2} v^{2}$.
5. Let $\Omega:=(0, L) \times(0, H)$ for $L>H>0$ be a rectangular domain. Compute a lower bound for

$$
\sup _{v \in H^{1}(\Omega)^{2}} \frac{|v|_{1}^{2}}{\|\epsilon(v)\|_{0}^{2}},
$$

by choosing $v(x, y)=\left(2 x y,-x^{2}\right)$. Is this $v \in H^{1}(\Omega)^{2}$? Why does this lower bound cause problems?
6. Have $A: B=\sum_{i, j} a_{i, j} b_{i, j}$ and $\operatorname{tr}(A)=\sum_{i} a_{i, i}$ and $\operatorname{dev}(A)=A-\frac{1}{n} \operatorname{tr}(A) I$. Show that

$$
\begin{gathered}
A: B=\operatorname{tr}\left(A^{T} B\right), \\
\operatorname{tr}\left(A B A^{-1}\right)=\operatorname{tr}(B)
\end{gathered}
$$

and

$$
\operatorname{tr}(\operatorname{dev} A)=0
$$

holds for all matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$.
7. Consider the linearized elasticity problem: Find $u \in\left[H^{1}(\Omega)\right]^{3}$ such that

$$
\begin{equation*}
\int_{\Omega} C \epsilon(u): \epsilon(v) \mathrm{d} x=\int_{\Omega} f \cdot v \mathrm{~d} x+\int_{\Gamma} t_{N} \cdot v \mathrm{~d} s \text { for all } v \in\left[H^{1}(\Omega)\right]^{3} \tag{1}
\end{equation*}
$$

Assume that there is a solution $u \in\left[H^{1}(\Omega)\right]^{3}$. Show that the right-hand side must satisfy the following conditions:

$$
\begin{equation*}
\int_{\Omega} f \mathrm{~d} x+\int_{\Gamma} t_{N} \mathrm{~d} s=0 \quad \text { and } \quad \int_{\Omega} x \times f \mathrm{~d} x+\int_{\Gamma} x \times t_{N} \mathrm{~d} s=0 \tag{2}
\end{equation*}
$$

8. Show that each function $v \in\left[H^{1}(\Omega)\right]^{3}$ can be rewritten as

$$
v=\hat{v}+v_{0}
$$

where $\hat{v} \in \hat{H}(\Omega):=\left\{v \in H^{1}(\Omega)^{3}: \int_{\Omega} v \mathrm{~d} x=0, \int_{\Omega} \operatorname{curl} v \mathrm{~d} x=0\right\}$ and $v_{0} \in R M$ (cf. Lemma 2.4 and Remark 2 on page 15).
9. You know that the problem, find $u \in \hat{H}(\Omega)$ such that

$$
\int_{\Omega} C \epsilon(u): \epsilon(v) \mathrm{d} x=\int_{\Omega} f \cdot v \mathrm{~d} x+\int_{\Gamma} t_{N} \cdot v \mathrm{~d} s \text { for all } v \in \hat{H}(\Omega)
$$

has a unique solution.
Show that, assuming (2), the solution of this problem, say u^{*}, also satisfies (1). Show moreover that (1) is also satisfeid for $u^{*}+u_{0}$, no matter how $u_{0} \in R M$ is chosen.

