
NuEPDE (Numerics of Elliptic Problems) SS 2014

T U T O R I A L

“Numerical Methods for the Solution of

Elliptic Partial Differential Equations”

to the lecture

“Numerics of Elliptic Problems”

Tutorial 07 - 10 - 13

Tuesday, 13 May 2014 - Tuesday, 03 June 2014 - Tuesday, 24 June 2014

Time: 1015 – 1145, Room: S2 / 120.

Programming project

In this project we will develop step by step a C++ code realizing a 2D Finite Element

Method. In our first meeting on May 13 you should present P01 - P06 . Then you have
time until the end of the semester (June 24) to finish the project. You can download the file
tut07-10-13.zip containing some auxiliary classes on the website of the lecture/tutorial.
Please make sure that your code is well-structured and well-documented and deliver it
to gangl@numa.uni-linz.ac.at by June 24, 2014. The project will be graded and will
count as 1/3 of the total grade of the tutorial.

Reference element

We consider Courant’s finite element. The reference triangle is given by

∆ = {ξ ∈ R2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1},

with vertices ξ(0) = (0, 0), ξ(1) = (1, 0), and ξ(2) = (0, 1), the space of shape functions
is P1, and the nodal variables are the evaluations at the three vertices. Recall that the
nodal shape functions are given by

p(0)(ξ) = 1− ξ1 − ξ2,

p(1)(ξ) = ξ1,

p(2)(ξ) = ξ2.

To model small vectors from Rn and n × m matrices, where m, n ∈ {2, 3}, it is
recommended to use vec.hh and mat.hh (see also the demo matvecdemo.cc). There,
0-based indices are used throughout, for example:

ξ ∈ R2 ↔ Vec<2> xi ξ1 ↔ xi[0]

ξ2 ↔ xi[1]

16

P01 Write two functions

double calcShape (int i, const Vec<2>& xi);

Vec<2> calcDShape (int i, const Vec<2>& xi);

that compute the value p(α)(ξ) and the gradient ∇ξ p(α)(ξ) of a nodal shape function,
respectively, where xi=ξ and i=α.

P02 Complete and implement the following class modelling the affine linear transforma-
tion xδ from ∆ to an arbitrary non-degenerate triangle δ:

x = xδ(ξ) = x0 + J ξ,

where x0 is the image of (0, 0).

class ElTrans {

public:

ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);

void transform (const Vec<2>& xi, Vec<2>& x);

void getJacobian (Mat<2, 2>& J);

...

};

Above, x0, x1, x2 are the three vertices of δ. The method transform should
transform reference coordinates xi=ξ to real coordinates x=xδ(ξ). The method
getJacobian should return the Jacobi matrix J of the transformation.

P03 Add two more methods to class ElTrans:

double jacobiDet ();

void getInvJacobian (Mat<2, 2>& invJ);

The first should return the Jacobi determinant det J (check if the determinant is
positive, why?), the second one should return invJ=J−1.

P04 Write a function

void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element stiffness matrix elMat=Kr associated to an element δr
(given by the three vertices x0, x1, and x2), i. e.,

(Kr)αβ =

∫
δr

∇x p(r,α)(x)·∇x p(r,β)(x) dx =

∫
∆

(
J−Tr ∇ξ p(α)(ξ)

)
·
(
J−Tr ∇ξ p(β)(ξ)

)
det(Jr) dξ.

Hint: Consider only the above formula on the reference element. Use calcDShape

to get ∇ξ p(α)(ξ), and ElTrans to get det J and J−1
r . Note finally that J−Tr and

∇ξ p(α) are constant on ∆.

P05 Write a function

17

void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, ScalarField f, Vec<3>& elVec);

that approximates the element load vector fr given by

(fr)α =

∫
δr

f(x) p(r,α)(x) dx =

∫
∆

f(xδr(ξ)) p
(α)(ξ) det(Jr) dξ,

using the following quadrature rule on ∆:∫
∆

g(ξ) dξ ≈ 1

6

[
g(1

6
, 1

6
) + g(4

6
, 1

6
) + g(1

6
, 4

6
)
]
.

Show that this quadrature rule is exact for g ∈ P2!

Hint: Use ElTrans to get xδr(ξ). Note that ξ must loop over the three integration
points.

Hint: To model the type of a scalar function depending on a vector in R2 use

typedef double (*ScalarField)(const Vec<2>& x);

P06 Write a function

void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element mass matrix Mr given by

(Mr)αβ =

∫
δr

p(r,α)(x) p(r,β)(x) dx

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i. e. apply them to concrete parameters and output the results!
At minimum use f(x, y) = 1 and test δr = ∆ as well as the triangle with the vertices
(1, 1), (1.5, 1), and (1.25, 1.5).

Assembling

Download the files
• vector.hh – a vector class (for vectors of dynamic length)
• sparsematrix.hh, sparsematrix.cc – a sparse matrix class
• mesh.hh, and mesh.cc – a 2D triangular mesh

from the tutorial website.
There are also two demos:
• smdemo.cc – showing how to work with the sparse matrix and
• meshdemo.cc – showing how to work with the mesh.

Go through these demos and understand what is happening there.

P07 Write a function

void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);

18

that assembles the stiffness matrix K according to the bilinear form

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) + u(x) v(x) dx

for mesh being the triangulation of Ω.

Hint: Reuse the functions from the previous section, in particular exercises P04
and P06 .

P08 Write a function

void assembleLoadVector (const Mesh& mesh, ScalarField f, Vector& b);

that assembles the load vector b according to the functional

〈F, v〉 =

∫
Ω

f(x) v(x) dx

for mesh being the triangulation of Ω.

Hint: Reuse the function from exercise P05 .

All routines should be tested for the two meshes created in meshdemo.cc

Solving

As a concrete example we consider the problem to find u ∈ H1(Ω) such that∫
Ω

∇u(x) · ∇v(x) + u(x) v(x) dx =

∫
Ω

f(x) v(x) dx ∀v ∈ H1(Ω), (3.14)

with f(x1, x2) = (5π2 + 1
4
) cos(2π x1) cos(4π x2). Give the classical formulation of formu-

lation (3.14)!

P09 Implement a Jacobi preconditioner:

class JacobiPreconditioner

{

public:

JacobiPreconditioner (const SparseMatrix& K);

void solve (const Vector& r, Vector& z);

};

P10 Assemble the finite element system K u = b for (3.14) for the initial mesh from
meshdemo.cc and solve it using conjugate gradients cg.hh with your Jacobi pre-
conditioner. Solve the same system for the uniformly refined meshes with h0/h =
2, 4, 8, 16 where h0 is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from
your program, and then loading the file into matlab (provided you have the PDE
Toolbox).

19

Incorporating boundary conditions

Consider the Neumann boundary value problem

−∆u(x) + u = f(x) for x ∈ Ω := (0, 1)2,

∂u

∂n
(x) = g(x) for x ∈ ΓN := ∂Ω .

The associated variational formulation is to find u ∈ V0 := H1(Ω) such that∫
Ω

∇u(x) · ∇v(x) + u(x) v(x) dx =

∫
Ω

f(x) v(x) dx+

∫
ΓN

g(x) v(x) ds ∀v ∈ V0 .

(3.15)

P11 Let e ⊂ ΓN be an element edge on the Neumann boundary with the two endpoints
x(e,1) and x(e,2) and set he := |x(e,2)− x(e,1)|. Let us denote the two functions on the
reference edge by p(1)(ξ) = 1− ξ and p(2)(ξ) = ξ.

Write a function

void calcNeumannElVec (const Point2D& p0, const Point2D& p1,

ScalarField g, Vec<2>& elVec);

to approximate

g(α)
e :=

∫
e

g(x) p(e,α)(x) ds ≈ he
2

(
g(x(e,1)) p(α)(0) + g(x(e,2)) p(α)(1)

)
as above by the trapezoidal rule; elVec≈ (g

(1)
e , g

(2)
e), p0=x(e,1), p1=x(e,2), and g=g.

P12 Write a function

void addNeumannLoadVector (const Mesh& mesh, ScalarField g, Vector& b);

which adds the contribution corresponding to
∫

ΓN
g(x) v(x) ds to an (already exist-

ing) load vector b.

Hint: Loop over all segments of the mesh and for those marked as Neumann (use
bcSegments[i] == BC NEUMANN) call calcNeumannElVec.

P13 Solve the finite element system corresponding to (3.15) with f(x1, x2) = −2.5 + x1

and g(x1, x2) = 0.5 for a suitably refined mesh (see exercise P10) and visualize
the solution.

Consider the Dirichlet boundary value problem

−∆u(x) = f(x) for x ∈ Ω := (0, 1)2,

u(x) = g for x ∈ ΓD := ∂Ω.

The associated variational formulation is to find u ∈ Vg := {u ∈ H1(Ω) : u|Γ = g} such
that ∫

Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x) v(x) dx ∀v ∈ Vg . (3.16)

20

P14 Write a function

void incorporateHomogeneousDirichletBC (const Mesh& mesh,

SparseMatrix& K, Vector& b);

that incorporates the homogeneous Dirichlet boundary conditions (g = 0) into the
system matrix K and the load vector b.

Hint: Loop over all segments of the mesh and search for those marked as Dirichlet
(use bcSegments[i] == BC DIRICHLET). For each such vertex with index i it sets
all entries in row i and column i of K to zero and Ki,i = 1, bi = 0.

P15 Solve the finite element system corresponding to (3.16) with f(x1, x2) =

20π2 sin(2πx1) sin(4πx2) for a suitably refined mesh (see exercise P10) and vi-
sualize the solution.

P16 Write a function

void incorporateInhomogeneousDirichletBC (const Mesh& mesh,

const Vector& ug, SparseMatrix& K, Vector& b);

that incorporates the inhomogenenous Dirichlet boundary conditions ug into the
system matrix K and the load vector b. Here ug is a vector of the same size as b

carrying the prescribed Dirichlet values (other values are ignored).

Hint: Ensure that the entries in ug, that do not correspond to Dirichlet values are
set to zero. The modification of the load vector b can be done by

b[i] =

{
ug[i], i corresponds to Dirichlet node

b[i]− (K ∗ ug)[i], else

After that, in order to modify K, proceed as in Exercise P14 .

P17 Solve the finite element system corresponding to (3.16) with f(x1, x2) =
20π2 sin(2πx1) sin(4πx2) and g(x1, x2) given by

g(x1, x2) =

0, x2 = 1 ∨ x1 = 1

(1− x1), x2 = 0

(1− x2), x1 = 0

for a suitably refined mesh (see exercise P10) and visualize the solution.

Let’s consider Robin boundary conditions of the type

∂u

∂N
:= λ

∂u

∂n
= κ(u0 − u) = g3 − κu.

for given λ, κ and u0 and the normal derivative n.

P18 Let e ⊂ ΓR be element edges on the Robin boundary with the two endpoints x(e,1)

and x(e,2). Let the reference edge be ∆ = (0, 1) with the corresponding nodal basis
functions p(0)(ξ) = 1− ξ and p(1)(ξ) = ξ. Write a function

21

void calcRobinElMat (const Vec<2>& x0, const Vec<2>& x1,

ScalarField kappa, Mat<2, 2>& elMat);

that computes the element Robin matrix K

Ke
αβ =

∫
e

κ(x)p(e,α)(x)p(e,β)(x)dx =

∫
∆

κ(xe(ξ))p
(α)(ξ)p(β)(ξ)det(Je)dξ

using the quadrature rule on ∆ = (0, 1) given by∫
∆

g(ξ)dξ ≈ 1

6
[g(0) + 4g(0.5) + g(1)] .

Show that this quadrature rule is exact for g ∈ P3.

Hint: In order to get xe(ξ), implement a class modelling the affine linear transfor-

mation for edges , i.e. in 1D (compare P02 , P03 and NumPDE-Tutorial).

P19 Write a function

void incorporateRobinBC (const Mesh& mesh, ScalarField kappa,

ScalarField u0, SparseMatrix& K, Vector& b);

that incorporates the Robin boundary conditions into the system matrix K and the
load vector b.

Hint: Loop over all segments of the mesh and search for those marked as Robin (use
bcSegments[i] == BC ROBIN) and reuse the function from the previous Exercise

P18 to add the local contributions to the stiffness matrix.

Hint: For the contribution corresponding to
∫

ΓR
g3(x) v(x) ds, proceed as for the

Neumann Boundary (see P11).

L2-error and H1-error

P20 Write a function

double calcElErrorL2 (const Point2D& p0, const Point2D& p1,

const Point2D& p2, ScalarField exact,

double v0, double v1, double v2);

that approximates the element L2-error ‖v − vh‖L2(δr), where exact=v and
vh(xδr(ξ)) =

∑
α∈A v

(r,α) p(α)(ξ) with v0=v(r,1) etc.

Hint: Use the quadrature rule from Exercise P05 to approximate

‖v − vh‖2
L2(δr) =

∫
δr

|v(x)− vh(x)|2 dx =

∫
∆

|v(xδr(ξ))− vh(xδr(ξ))|2 | det Jδr | dξ

P21 Write a function

double calcElErrorH1 (const Point2D& p0, const Point2D& p1,

const Point2D& p2,

ScalarField Dx1exact, ScalarField Dx2exact,

double v0, double v1, double v2);

22

that approximates the element H1-error |Dv − ∇vh|L2(δr), where Dv = ∇v =
(∂v
∂x1
, ∂v
∂x2

)T , with Dx1exact= ∂v
∂x1

, Dx2exact= ∂v
∂x2

and vh(xδr(ξ)) =
∑

α∈A v
(r,α) p(α)(ξ)

with v0=v(r,1) etc.

Hint: Use the quadrature rule from Exercise P05 to approximate

|v−vh|2H1(δr) =

∫
δr

|Dv(x)−∇xvh(x)|2 dx =

∫
∆

|Dv(xδr(ξ))−J−Tr ∇ξvh(xδr(ξ))|2 | det Jδr | dξ

P22 Write a function

double calcErrorL2 (const Mesh& mesh, ScalarField exact,

const Vector& solution);

that approximates the global L2-error ‖v − vh‖L2(Ω), where exact=v and
solution=vh.

Hint: use calcElErrorL2 in a loop over all elements.

Show that u(x1, x2) = 1
4

cos(2π x1) cos(4π x2) is the unique solution of (3.14) (see

Tutorial 08, Exercise P10). Compute ‖u−uh‖L2(Ω) for each finite element solution

uh from Exercise P10 for the different meshes.

P23 Write a function

double calcErrorH1 (const Mesh& mesh, ScalarField exact,

ScalarField Dx1exact, ScalarField Dx2exact,

const Vector& solution);

that approximates the global H1-error ‖v − vh‖H1(Ω), where exact=v,
Dx1exact= ∂v

∂x1
, Dx2exact= ∂v

∂x2
and solution=vh.

Hint: use calcElErrorL2 and calcElErrorH1 in a loop over all elements.

Compute ‖u− uh‖H1(Ω) for each finite element solution uh from Exercise P10 for
the different meshes.

The CHIP-Problem

Recall the CHIP-Problem from the lecture (T08a, T08b, T09)!

P24 Prepare the initial mesh for the CHIP problem as proposed on T09 in your mesh-
format, taking care of the appropriate boundary conditions.

Hint: If possible use symmetric reduction.

P25 Modify your functions from P04 , P06 and P07 , such that you can assemble
the stiffness matrix K according to the bilinear form

a(u, v) =

∫
Ω

λ(x)∇u(x) · ∇v(x) + a(x)u(x) v(x) dx,

where λ(x) and a(x) are given coefficient functions.

23

P26 Solve the finite element system corresponding to the CHIP problem on T08a with

the parameter setting of T08b for the initial mesh of P24 . Solve the same system
for uniformly refined meshes with h0/h = 2, 4, 8, 16 and visualize the solution.

Hint: For incorporating the BC, use the following order: First natural BC, then
essential BC.

A posteriori error estimates

P27? Implement the residual error estimator for the CHIP-problem as derived in Section
3.6.2 of the lecture (see exercise in Tutorial 12).

P28? Compute the residual error for the CHIP-problem for uniformly refined meshes with
h0/h = 2, 4, 8, 16 and visualize the error on each element!

24

