Zenger Correction

Katharina Rafetseder

February 11, 2014

Outline

(1) Decomposition of the error

- Estimation of the error terms
(2) Theorem: Existence Zenger Correction s.t. $u(x)-R_{h, \gamma} u(x)=O\left(h^{2}|\log (h)|\right)$

Outline

(1) Decomposition of the error

- Estimation of the error terms
(2) Theorem: Existence Zenger Correction s.t. $u(x)-R_{h, \gamma} u(x)=O\left(h^{2}|\log (h)|\right)$

Decomposition of the error

$$
u(x)-R_{h, \gamma} u(x)=a\left(u-R_{h, \gamma} u, g_{x}\right)+O\left(h^{2}\right)
$$

Expansion of u

$$
u(x)=c \phi(x)+U(x), \quad U(x) \in H^{2}(\Omega)
$$

$$
\phi(x)-R_{h, \gamma} \phi(x)=a\left(\phi-R_{h, \gamma} \phi, g_{x}\right)+O\left(h^{2}\right)
$$

Decomposition of the error

$$
u(x)-R_{h, \gamma} u(x)=a\left(u-R_{h, \gamma} u, g_{x}\right)+O\left(h^{2}\right)
$$

Expansion of u

$$
u(x)=c \phi(x)+U(x), \quad U(x) \in H^{2}(\Omega)
$$

$$
\phi(x)-R_{h, \gamma} \phi(x)=a\left(\phi-R_{h, \gamma} \phi, g_{x}\right)+O\left(h^{2}\right)
$$

Decompose regularized Green's function g_{x} and $R_{h, \gamma} g_{x}$

$$
\begin{aligned}
g_{x}(y) & =d(x) \phi(y)+G_{x}(y) \\
R_{h, \gamma} g_{x}(y) & =d(x) R_{h, \gamma} \phi(y)+R_{h, \gamma} G_{x}(y)
\end{aligned}
$$

Modified Orthogonality

$$
a\left(\phi-R_{h, \gamma} \phi, v_{h}\right)+K_{\gamma}\left(R_{h, \gamma} \phi, v_{h}\right)=0, \quad \forall v_{h} \in V_{h, 0}
$$

$$
\begin{aligned}
= & a\left(\phi-R_{h, \gamma} \phi, g_{x}\right)+a\left(\phi-R_{h, \gamma} \phi,-R_{h, \gamma} g_{x}\right) \\
& +K_{\gamma}\left(R_{h, \gamma} \phi,-R_{h, \gamma} g_{x}\right)+O\left(h^{2}\right) \\
= & a\left(\phi-R_{h, \gamma} \phi, g_{x}-R_{h, \gamma} g_{x}\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} g_{x}\right)+O\left(h^{2}\right) \\
= & a\left(\phi-R_{h, \gamma} \phi,\left[d(x) \phi+G_{x}\right]-\left[d(x) R_{h, \gamma} \phi+R_{h, \gamma} G_{x}\right]\right) \\
& -K_{\gamma}\left(R_{h, \gamma} \phi,\left[d(x) R_{h, \gamma} \phi+R_{h, \gamma} G_{x}\right]\right)+O\left(h^{2}\right) \\
= & d(x)\left[a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)\right] \\
& +a\left(\phi-R_{h, \gamma} \phi, G_{x}-R_{h, \gamma} G_{x}\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} G_{x}\right)+O\left(h^{2}\right)
\end{aligned}
$$

Estimation first error term

$$
a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)
$$

Lemma

If there exists a ξ such that

$$
a\left(\phi-P_{h} \phi, \phi-P_{h} \phi\right)-K_{\xi}\left(P_{h} \phi, P_{h} \phi\right)=0
$$

and $a_{\eta}(u, v)=a(u, v)-K_{\eta}(u, v)$ is positive definite $\forall 0 \leq \eta \leq \xi$
then there is a γ with $0 \leq \gamma \leq \xi$, such that

$$
\begin{aligned}
& a(\phi, \phi)-a_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right) \\
& =a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)=O\left(h^{2}\right)
\end{aligned}
$$

Modified Energy depends continuously on γ :

$$
a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)
$$

is a continuous function of γ.

Modified Energy depends continuously on γ :

$$
a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)
$$

is a continuous function of γ.

Minimization property

$R_{h, \xi} \phi$ is the minimizer of

$$
\min _{\phi_{h} \in V_{h, 0}} a\left(\phi-\phi_{h}, \phi-\phi_{h}\right)-K_{\xi}\left(\phi_{h}, \phi_{h}\right)
$$

Modified Energy depends continuously on γ :

$$
a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)
$$

is a continuous function of γ.

Minimization property

$R_{h, \xi} \phi$ is the minimizer of

$$
\min _{\phi_{h} \in V_{h, 0}} a\left(\phi-\phi_{h}, \phi-\phi_{h}\right)-K_{\xi}\left(\phi_{h}, \phi_{h}\right)
$$

\Rightarrow Intermediate value theorem

Assumption: There exists a ξ s.t.
$a\left(\phi-P_{h} \phi, \phi-P_{h} \phi\right)-K_{\xi}\left(P_{h} \phi, P_{h} \phi\right)=0$

- Behaviour of ϕ only depends on inner angle of the reentrant corner.
Behaviour of P_{h} only depends on the triangulation.

Assumption: There exists a ξ s.t.

$$
a\left(\phi-P_{h} \phi, \phi-P_{h} \phi\right)-K_{\xi}\left(P_{h} \phi, P_{h} \phi\right)=0
$$

- Behaviour of ϕ only depends on inner angle of the reentrant corner.
Behaviour of P_{h} only depends on the triangulation.
- For a local correction

$$
K_{\xi}\left(u_{h}, v_{h}\right)=\xi \sum_{i, j \in N(0,0)} \beta_{i j} u_{h}\left(x_{i}\right) v_{h}\left(x_{j}\right)
$$

we receive a linear equation for $\xi \rightarrow$ unique solution.
Problem: ξ can be too large, s.t. $a_{\xi}(u, v)=a(u, v)-K_{\xi}(u, v)$ is not positive definite.

Assumption: There exists a ξ s.t.

$$
a\left(\phi-P_{h} \phi, \phi-P_{h} \phi\right)-K_{\xi}\left(P_{h} \phi, P_{h} \phi\right)=0
$$

- Behaviour of ϕ only depends on inner angle of the reentrant corner.
Behaviour of P_{h} only depends on the triangulation.
- For a local correction

$$
K_{\xi}\left(u_{h}, v_{h}\right)=\xi \sum_{i, j \in N(0,0)} \beta_{i j} u_{h}\left(x_{i}\right) v_{h}\left(x_{j}\right)
$$

we receive a linear equation for $\xi \rightarrow$ unique solution.
Problem: ξ can be too large, s.t. $a_{\xi}(u, v)=a(u, v)-K_{\xi}(u, v)$ is not positive definite.

- E.g. regular triangulation (triangles are of the same size) the corresponding $a_{\xi}(u, v)$ is always positive definite.

Estimation second error term

$$
a\left(\phi-R_{h, \gamma} \phi, G_{X}-R_{h, \gamma} G_{x}\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} G_{X}\right)
$$

Lemma

For g_{x} decomposed in the following way $g_{x}(y)=d(x) \phi(y)+G_{x}(y)$ we have

$$
a\left(\phi-R_{h, \gamma} \phi, G_{x}-R_{h, \gamma} G_{x}\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} G_{x}\right)=O\left(h^{2}|\log (h)|\right)
$$

[Proof: Blum and Rannacher, Extrapolation Techniques for Reducing the Pollution Effect of Reentrant Corners in the Finite Element Method.]

Outline

(1) Decomposition of the error

- Estimation of the error terms
(2) Theorem: Existence Zenger Correction s.t. $u(x)-R_{h, \gamma} u(x)=O\left(h^{2}|\log (h)|\right)$

Theorem

Let Ω be an L-shaped domain and the triangulation be regular and non-degenerated.
Find $u \in H_{0}^{1}(\Omega)$ s.t. $a(u, v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)$. Let

$$
K\left(u_{h}, v_{h}\right)=\sum_{i, j \in N(0,0)} \beta_{i j} u_{h}\left(x_{i}\right) v_{h}\left(x_{j}\right)
$$

be a local correction which is positive semidefinite and ξ be in \mathbb{R}_{+}s.t.

$$
a_{\xi}(u, v)=a(u, v)-\xi K(u, v)
$$

is positive definite and

$$
a\left(\phi-P_{h} \phi, \phi-P_{h} \phi\right)-K_{\xi}\left(P_{h} \phi, P_{h} \phi\right)=0
$$

Theorem (cont.)

Then there exists a correction parameter $0 \leq \gamma \leq \xi$ s.t. the numerical solution $R_{h, \gamma} u$ of the corrected problem fulfils the pointwise estimate

$$
u(x)-R_{h, \gamma} u(x)=O\left(h^{2}|\log (h)|\right) \quad \text { for fixed } x \in \Omega .
$$

Decompose u and $R_{h, \gamma} u$ into a singular and regular component.

$$
\begin{aligned}
u(x) & =c \phi(x)+U(x), \quad U \in H^{2}(\Omega) \\
R_{h, \gamma} u(x) & =c R_{h, \gamma} \phi(x)+R_{h, \gamma} U(x)
\end{aligned}
$$

Pointwise error in the singular component

$$
\begin{aligned}
& \phi(x)-R_{h, \gamma} \phi(x) \\
& =d(x)\left[a\left(\phi-R_{h, \gamma} \phi, \phi-R_{h, \gamma} \phi\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} \phi\right)\right] \\
& +a\left(\phi-R_{h, \gamma} \phi, G_{x}-R_{h, \gamma} G_{x}\right)-K_{\gamma}\left(R_{h, \gamma} \phi, R_{h, \gamma} G_{x}\right)+O\left(h^{2}\right)
\end{aligned}
$$

- $1^{\text {st }}$ error term is of order $O\left(h^{2}\right)$ (γ chosen accordingly).
- $2^{\text {nd }}$ error term is of order $O\left(h^{2}|\log (h)|\right)$ independently of γ.

Pointwise error in the regular component

$$
U(x)-R_{h, \gamma} U(x)=O\left(h^{2}|\log (h)|\right)
$$

[Proof: Blum and Rannacher, Extrapolation Techniques for Reducing the Pollution Effect of Reentrant Corners in the Finite Element Method.]

Remark: Generalization of theorem

The above theorem is also valid for the more general case where decomposition of u consists of more then one singular function.

Concrete example of a Zenger Correction

Special case: L-shaped domain + regular 5-point-discretization

Possible correction

Replace the difference equation

$$
\begin{aligned}
& \qquad u_{h}(0,0)=g(0,0) \text { by } \\
& u_{h}(0,0)-g(0,0)=\frac{1}{\kappa}\left[u_{h}(-h, 0)-2 g(0,0)+g(h, 0)\right] \\
& \text { where } \kappa=5.07925 \ldots
\end{aligned}
$$

$$
u(x)-u_{h}(x)=O\left(h^{2}\right) \quad \text { for fixed } x \in \Omega
$$

Zenger Correction

Katharina Rafetseder

February 11, 2014

