Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Stephen Edward Moore

Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences, Linz, Austria

Numerical Analysis Seminar, JKU, January 14, 2014

э

・ロト ・ 一下・ ・ ヨト ・ 日 ・

Singularities in BVP

Construction of Graded Mesh

FE-Scheme Error Estimates

Numerical Results

Singularities in BVP

$$Lu \equiv -\frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + b_i \frac{\partial u}{\partial x_j} + \sigma u = f, \quad in \quad \Omega$$
$$u|_{S_1} = 0, \quad \left(a_{ij} \frac{\partial u}{\partial N} + \sigma u \right)|_{S_2} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cases of Singularities:

- Discontinuous coefficients (a_{ij}).
- Discontinuous right-hand side (f).
- Jump in boundary data.
- Domains with corner points.

Domains with corner points

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Recap...

$$-\Delta u + u = f \text{ in } \Omega \subset \mathbb{R}^2$$
$$\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega := S$$

Find $u \in H = W_2^1(\Omega)$: $L_{\Omega}(u, \phi) = (f, \phi)_{\Omega}, \quad \forall \phi \in H$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

where

- $\bullet \ u = u_R + u_S$
 - ► *u_R* Regular part.
 - $u_{S} = \sum_{0 < \lambda < 1} \gamma \psi(r, \theta)$ is Singular part.
- $\psi(\mathbf{r},\theta) = \xi(\mathbf{r})\mathbf{r}^{\lambda}\cos\lambda\theta$
 - $\blacktriangleright \ \lambda = \pi/\beta \text{ and } 1/2 < \lambda < 1.$
 - $\xi(r)$ smooth cut-off function.

Singularities in BVP

Construction of Graded Mesh

FE-Scheme Error Estimates

Numerical Results

Construction of Graded Mesh

Aim : To construct a mesh such that node distribution becomes denser towards the singular point.

Example : 1D Graded Mesh

Figure : 1D graded mesh with varying μ

・ロト ・聞ト ・ヨト ・ヨト

æ

Example : L-Shape Graded Mesh

graded mesh with $\mu = 0.4$

No grading with $\mu = 1.0$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Example : Curved domain

$$\vartheta_i = \{r_{i-1} \leq r \leq r_i\}, \quad i = 1, \dots, N$$

$$D = \bigcup_{i=1}^N \vartheta_i$$

- S^h is located exterior to
 Ω (S^h ∩ Ω = ∅)
 - nodes $x \in S^h \land z \in D$: $dist(x, S) \le \delta h^2 = O(h^2)$
 - nodes $x \in S^h \land z \in \vartheta_i$: $dist(x, S) \le \delta h_i^2$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Triangulation (\mathcal{T}_h) of $\Omega_{e_X}^h$: Conditions to satisfy: 1. $\delta, \delta' \in \mathcal{T}_h : \delta \cap \delta' := \{\emptyset, \text{ joint vertex, joint edge}\}$ $\bullet \ \overline{\delta} \cap \vartheta_i \neq \emptyset : \ell_1 h_i \leq \ell = |e| \leq \ell_2 h_i, \quad \forall e \in \partial \delta$ $\bullet \ \overline{\delta} \cap D = \emptyset : \ell_1 h \leq \ell = |e| \leq \ell_2 h, \quad \forall e \in \partial \delta$ 2. $\theta_\delta \geq \theta_0 = const. > 0 \quad \forall \delta \in \mathcal{T}_h$ 3. $N_i := |\{\delta \in \mathcal{T}_h : \overline{\delta} \cap \vartheta_i\}| \leq N_0 i$ where $\ell_1, \ell_2, N_0 \neq C(h)$.

bad condition number in the case of natural BC (right figure).

Remark

- $\overline{R_h}$:= number of nodes = $\mathcal{O}(h^{-2})$.
- number of nodes not located in $D = O(h^{-2})$
- number of nodes (M) located in D is :

$$M \leq C \sum_{i=1}^{N} N_i \leq C N_0 \sum_{i=1}^{N} i \leq C h^{-2} = \mathcal{O}(h^{-2}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Singularities in BVP

Construction of Graded Mesh

FE-Scheme Error Estimates

Numerical Results

FE-Scheme Error Estimates

Find
$$u \in W_2^1(\Omega)$$
:
 $L_{\Omega}(u,\phi) = (f,\phi)_{\Omega} \quad \forall \phi \in H$

Find $\tilde{v} \in H_h = S^1(\Omega_{ex}^h)$: $L_{\Omega}(\tilde{v}, \phi) = (f, \phi)_{\Omega} \quad \forall \phi \in H_h$

Cea's Lemma :
$$\|u - \tilde{v}\|_{1,\Omega} \leq C \min_{\phi \in H_h} \|u - \phi\|_{1,\Omega}$$

•
$$u = \gamma \psi + w \in H$$
 with $w \in W_2^2(\Omega) \subset W_2^2(\widetilde{\Omega})$

Interpolant :

$$\Pi_h : L_2 \longrightarrow H_h \tilde{u} = \Pi_h u = \gamma \Pi_h \psi + \Pi_h w = \gamma \tilde{\psi} + \tilde{w} \in H_h$$

$$\|u-\tilde{v}\|_{1,\Omega} \leq C \|u-\tilde{u}\|_{1,\Omega_{ex}^h}$$

For
$$\delta = \triangle \in \mathcal{T}_h : \psi = 0$$
, *i.e.u* = w

$$\|u-\tilde{u}\|_{1,\bigtriangleup}^2 = \|w-\tilde{w}\|_{1,\bigtriangleup}^2 \leq Ch^2 \|w\|_{2,\square}^2$$

CASE I : $\triangle \cap [\vartheta_1 \cup \vartheta_2] \neq \emptyset$: Show

$$\|\boldsymbol{u}-\tilde{\boldsymbol{u}}\|_{1,\bigtriangleup}^2 \leq C\left(h^{2\lambda/\mu}|\boldsymbol{\gamma}|^2+h^2\|\boldsymbol{w}\|_2^2\right)$$

Ideas for Proof:

1.
$$r \leq Ch^{1/\mu}$$

2. $\|\psi\|_{1,\triangle}^2 \leq Ch^{2\lambda/\mu}$ and $\|\tilde{\psi}\|_{1,\triangle}^2 \leq Ch^{2\lambda/\mu}$.
3. $\|w - \tilde{w}\|_{1,\triangle}^2 \leq Ch^2 \|w\|_{2,\square}^2$
4. $\|u - \tilde{u}\|_{1,\triangle}^2 \leq 4|\gamma|^2 \left(\|\psi\|_{1,\triangle}^2 + \|\tilde{\psi}\|_{1,\triangle}^2\right) + 2\|w - \tilde{w}\|_{1,\triangle}^2$

CASE II : $\triangle \cap [\vartheta_1 \cup \vartheta_2] = \emptyset$:

$$\|u-\tilde{u}\|_{1,\Omega_{ex}^{h}}^{2} \leq C\left[h^{2\frac{\lambda}{\mu}}|\gamma|^{2}\left(1+\sum_{i=1}^{N}i^{2\frac{\lambda}{\mu}-4}\right)+h^{2}\|w\|_{2,\Omega}^{2}\right]$$

Ideas for Proof:

1.
$$|D^2\psi|^2 \leq Cr^{2\lambda-4}$$

2. $\|w - \tilde{w}\|_{1,\Delta}^2 \leq Ch^2 \|w\|_{2,\Box}^2$
3. $\|u - \tilde{u}\|_{1,\Delta}^2 \leq C\left(h_i^4 r_i^{2\lambda-4} |\gamma|^2 + h_i^2 \|w\|_{2,\Box}^2\right)$
4. sum over all triangles $\Delta \in \mathcal{T}_h$

• For $\mu = 1$

$$\sum_{i=1}^{N} i^{2\lambda-4} \leq C < \infty, \quad \forall N.$$

 $\|u-\tilde{v}\|_{1,\Omega^h_{ex}}\leq Ch^{\lambda}\|f\|_{0,\Omega}$

• For
$$\mu < \lambda$$
, i.e. $\frac{\lambda}{\mu} > 1$

$$\sum_{i=1}^{N} i^{2\frac{\lambda}{\mu}-4} \leq Ch^{2-2\frac{\lambda}{\mu}}$$

 $\|u-\tilde{v}\|_{1,\Omega^h_{\mathrm{ex}}} \leq Ch\|f\|_{0,\Omega}$

Outline

Singularities in BVP

Construction of Graded Mesh

FE-Scheme Error Estimates

Numerical Results

Construction of Graded Mesh: IGA

Example : L-Shape with 2 patches

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ u = g_D & \text{on } \partial \Omega \end{cases}$$

$$\begin{array}{l} u(x,y) = (x^2 + \\ y^2)^{1/3} \sin((2 \arctan(y/x) + \\ \pi)/3). \end{array}$$

• $\|u - u_h\|_{L^2} = \mathcal{O}(h^{4/3}).$ • $\|u - u_h\|_{H^1} = \mathcal{O}(h^{2/3}).$

Knot Vector

Figure : L-Shape solution on multi-patch.

Gradient of the solution.

Ref: [http://www.math.uci.edu/chenlong/226/Ch4AFEM.pdf]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knot Vector Grading: insert knots closer to singularity.

Figure : L_2 -Errors of graded mesh plotted against DOFs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Figure : H^1 -Errors of graded mesh plotted against DOFs.

Conclusion

1. For $\mu = 1$, the convergence rate for $p \ge 1$ is

$$\|u - u_h\|_{L^2} = \mathcal{O}(h^{4/3}). \|u - u_h\|_{H^1} = \mathcal{O}(h^{2/3}).$$

2. Knot grading with 0 $<\mu<$ 0.6

$$||u-u_h||_{L^2}=\mathcal{O}(h^2)$$

$$||u-u_h||_{H^1}=\mathcal{O}(h).$$

- 3. Remarks on the artifacts in errors:
 - condition number of matrix deteriorates for $\mu \rightarrow 0$.
 - related solver issues.
 - computation of the H¹-norm close to the singularity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで