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Introduction

Let be:

{7k}, k > 1, a family of triangulations of 2, where a regular subdivision
Ti+1 of is obtained from 7y by connecting the edges of the triangles in

Tk.

Figure: Triangulation

Vi={veHQ): v|r €PLVT € Ti} ...piecewise linear finite
elements associated with Ty.
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Introduction

The discrete inner product (-, )« defined by

(ow=h > wvp)w(p) Yvi,ve Vi

vertices p of Ty

= (v, v)k is spectral equivalent to HvHiQ(Q) Vv € Vi.

The operators Ay : Vi — Vi and If7! : Vi — Vi_1 (Restriction Operator),
defined by:

(Akvl, Vz)k Z/ Vvi - Vv dx Vvl, Vo € Vk C kah
Q
(I,f(_lv7 w)k—1 =(v, w)k Vv € Vi,w € V1.

= Ai symmetric, positive definite and the spectralradius p(Ax) < h; 2.
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The methods

Standard k-th level multigrid iteration

The k-th level multigrid iteration with initial guess z yields MG(k, zy, g) as an approximate solution to the

equation
Az =g.

For k = 1, MG(1, zp, g) is the solution obtained from an exact solver, i.e. MG(1, zp, g) = AflgA

For k > 1, there are two steps.
Smoothing Step:  Let z; € V| (1 < | < m) be defined recursively by the equations
1
zp=2z_1+ — (g — Akzj—1), 1< 1< m, (Richardson Relaxation)
k

where m € Ny independent of k, and v, = Chk_2 dominates p(Ag).
. — k—1 .
Correction Step:  Letg = I,/ "(g — Axzm) € V1 and q; € V1 (0<i<p, p=1(V-cycle) or
p =2 (W-cycle)) be defined recursively by
and q; = MG(k —1,q,_1,8),

qo =0
N— ————
approx. of Al z
. k—1

1<i<p.

The output is obtained by combining the two steps:
MG(k, 20, g) = zm + qp-
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The methods

Full multigrid algorithm 1

If f € L2(Q), we use the nested iteration to compute 4 and wy.

The nested iteration:
For k =1,
wy = A;lgl, where (g1,v); = /vadx Vv € Vi.
We set
k1 =0 and u; = wy.

For k > 2, ki € R are computed by

1
K = — (/ fs,dx-%—/ uk,lAs,dx),
™ Q Q

and wy, € V) is obtained recursively by
Wi, 0 = Wk_1, w1 = MG(k, wi j_1, 8k)s wp = wy,, forl <1 <n,

where n is a positive integer independent of k, and gy € V/ is defined by

(8k,v)k = / (fvdx + kgAsy) dx Vv € V.
Q

We define then uy by

Ug = KgSy+ + wy.
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The methods

Full multigrid algorithm 2

If f € HY(R), we use the nested iteration to compute Kg ko £ € L and wy.

The nested iteration:
For k =1,

W1:Aflg1, where (gl,v)lz/ fvdx Vv e V.
Q
We set

tp1 =0 for € L, and u3 =wp.

For k > 2, kg x € R are computed by

1 . .
nk:—</ Fs+y_5dx+/ uk_lAs+7_gdx) for £ €L,
o Q Q

and wy, € V) is obtained recursively by

Wi,o = Th_ We—1, wi,| = MG(k, wk,1—1, &), wk = wg, forl </ <n,

where n is a positive integer independent of k, and gx € V) is defined by

(8k> v)k :/ (fvdx+ Z nz,kASJF_g) dx Vv e V.
o )

el

We define then u by

up = Z Ko kSt 0 + wy.
LeLl
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The methods

The intergrid transfer operator J/X ;

Qx C HOI(Q))(I( =0,1,2,...) quadratic Lagrange finite element space associated with 7. (1)

we define the interpolation operators

k—1
I 5t Qk—2 = Vi1

w — v, such that v(p) = w(p) V vertices pof Tj_1

which is an isomorphism and

k
Ty Qo — Vi
w — v, such that v(p) = w(p) V vertices p of Ty,

and further the intergrid transfer operator:

k k k—1\—1
TE =T 50 (T i Ve = Vi fork=2,3,....
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Convergence results

Contraction properties for the k-th level iteration

Convergence result for the k-th level iteration in the energy norm:

Let p=1 (V-cycle) or p =2 (W-cycle) and m > 1 in the k-th level iteration.
Then there exists a § < 1, independent of k, such that

|z — MG(k, 20, &) |11 () < 3|z — Zo|p1(q)- (2)

Convergence result for the k-th level iteration in the || - || j1—(r/w)+e(q) NOrm:

Let p=2 (W-cycle), 0 < § <1, 0<e<m/wand ae =1—m/w#1/2. If the
number of smoothing steps m in the k-th level iteration is sufficiently large,
then we have

|z — MG(k, 20, &)llneve (@) < 0|2 — 20| e (2)- (3)
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Convergence results

Convergence Analysis for the full multigrid algorithm 1

Let p =2 (W-cycle), 0 < € < /w, ae = 1—7/w # 1/2 and the number of smoothing
steps m in the k-th level iteration be sufficiently large, that (2) and (3), hold for
0 < § < 1. If the number of nested iterations n is sufficiently large, then we have

lw — wil () Shillflliz)s (4)
1+7m/w—e

Ik — rkl Sehy ™™ 7NNl 200 (5)
1+7w/w—e

Iw = willmac @) Sebk ™ I1F 2. (6)

where wy and ki are computed by Full multigrid algorithm 1.

Corollary

Under the assumption of theorem 3, we have

lu = uklpn) S bellfll2(q)- (7)

A\
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Convergence results

Convergence Analysis for the full multigrid algorithm 2

Properties of the intergrid transfer operator ._7,571 V1 — Vg

Lemma

We have the following estimates for Jlf—l"
k
[TVl Shlvligigy Vv € Vk—1, (8)
Q) Q)
Men — JE_iN <Shptt Vv eV, 9
Men = T 1Mk—1ml () Shi Il ey Vv € Vi1, (9)
where

Ny : HAHQ) — Vi
w — v, such that v(p) = w(p) V vertices p of Ty,

is the nodal interpolation operator associated with Vj and 0 < t < 1.
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Convergence results

Uniform band condition (UBC)

Definition

A uniform band in a triangulation is a collection of triangle between two parallel lines, such that any two triangle s
sharing a common side form a parallelogram (see figure 2). We say a triangulation satisfies the uniform band
condition (UBC), if it can be divided completely into uniform bands (see figure 3).

Figure

One can always find a triangulation satisfying the uniform band condition for any polygonal domain whose vertices
all have rational coordinates, and the uniform band condition is preserved by regular subdivision.
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Convergence results

Super convergence result

We define the Ritz projection operator Py : H?(Q) — Vi by
/ V(n—Pn)-Vvdx=0 Vne H}Q), vE V.
Q

Suppose the triangulations Ty satisfy the uniform band condition and
n € H3(Q) N H(Q). Then

INkn — Pinl i (qy Shillnllpsa)-

Corollary

| \

Suppose the triangulations Ty satisfy the uniform band condition and
n € H3(Q)NHI(Q) for 0 < t < 1. Then

IMkn = Pinl gy Shi Inll pevea)-
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Convergence results

Convergence Analysis for the full multigrid algorithm 2

Using this previous superconvergence result we can show:

Theorem

Let f € Hl(Q). Assume that the triangulations Ty, satisfy the uniform band condition, p = 1 (V-cycle), or p = 2
(W-cycle), and m > 1. If the number of nested iterations n is sufficiently large, then we have

o

IMew — wiel y1.qy Sehic™ “NFlla gy (10)
A

S Iwe — mekl Sehy Nl 1) (11)

lec

where L = {£ € N: £m/w < 2} and wy, K are computed by Full multigrid algorithm 2.

Corollary

Under the assumption of theorem 7, we have

lu = il gy S hulFllprgqy and maxu(p) — uk(p)l gy Se b “IIFlly1qy» (12)

where the maximum is taken over all the vertices p € Tj.
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Convergence results

If for all internal angles w of Q we have {w # 7/2 for all £ € N, then
w € H3(Q),
from which follows the e-independent estimates:

Mew — wi i) SHRNF )

> Ike = Kol SHEIFll ),
el

m5X|U(P) — u(p) () ShElIn AV ey
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Numerical Experiments

Model data:

Domain Q:
M-shaped domain (see figures 4 and 5) with vertices
(07 0)7 (Oa 1)7 (17 1)7 (_17 1)3 (_1’ _1) and (07 _1)

Figure: -shape triangulation Figure: -shape triangulation
(without UBC) (with UBC)
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Numerical Experiments

Model data:

Finite element:
P1-Lagrange finite element.

Meshsize:
The meshsize hy for the k-th level grid is taken by 2.

Multigrid parameters:

Using a W-cycle k-th (p=2) level iteration, with 5 smoothing steps
(m=n=5). Why m = n = 5?7 Because the numerical results do not
appear to improve for any larger m or n.
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Numerical Experiments

Singular function on the -shaped domain:

si(r,0) =n(r)r*’?sin(2/36),
s:(r,0) =n(r)r*/*sin(4/30).
Cut-off function n:
1

n(r) = § —192r° + 480r* — 440r> + 180r* — 1 4 21
0

Blw BRI

(see figure 6).

Figure: Cut off function n
Wolfgang Krendl
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Numerical Experiments

Input data:

We will now compute a solution of the Poisson equation

—Au=f inQQ,
(13)
u=0 on 90N.

using
@ Standard full multigrid algorithm.
@ Full mulitgrid algorithm 1.
@ Full mulitgrid algorithm 2.

for

f=—As; — Asy +6x(y? — y*) + (x — x3)(12y2 — 2),

with exact solution

u= s1 + $2 +(x —x3)(y? — y*) (exact solution).
~~ ~
EHL(Q) A gH2(Q) €H2(Q) A gH3—¢(Q)
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Numerical Experiments

Experiment 1: Standard full multigrid algorithm (SFA)

Solving the Poisson equation (13)
—Au=f inQ, u=0 onoQ.
with
f=—As — Asy + 6x(y* — y*) 4+ (x — x*)(12y% — 2)
and exact solution
u=si+s+(x—x°)02 -y,

by the standard full multigrid algorithm, on the the '-shape, using the discretization
fulfills not the uniform band condition presented in figure 4.

Approximations for the stress intensity factors ki are computed by the extraction

formula
1
Kp = — (/ fs,dx—&-/ uAs,dx),
™ Q Q

using the P1 finite element solution uy obtained by standard full multigrid algorithm.
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Numerical Experiments

Experiment 1: Standard full multigrid algorithm (SFA)

e =|Myu — ulel(Q) ... error in the energy norm,
[rk—1 — 1 R
oy =logy ﬁ ... convergence rate for stress intensity factor,
K —1

€k—1 .
€ = Iog2 (T) ... convergence rate in the energy norm.
k

= Theoretical: oy = O(ht/3) and ¢, = (D(hi”)

k Ok c €x

1 1.27093 x 10Y

2 1.43 | 5.91072 x 10 1.1045
3 | 1.1036407706 | 1.32 10 1.8728
1 | 1.0287080790 | 1.85 10 1.4905

5 1.97
6 | 1.0020544785 | 1.84 | 1.64752 x 10
7
8

T

T

Z11.0535
1.0005531037 | 1.89 | 1.02811 x 102

3

T

T

1.0001571227 | 1.82 | 6.46930 x 10

9 | 1.0000458701 [ 1.78 | 4.07502 x 10~
10 | 1.0000142397 | 1.69 | 2.56715 x 10"
11 | 1.0000046460 | 1.62 | 1.61722 x 10~

0.6666
0.6666

Figure: Results for SFA.
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Numerical Experiments

Experiment 2: Full multigrid algorithm 1 (FMGAL)

Solving the Poisson equation
—Au=f inQ, u=0 ondN.
with
f=—As; — Asy +6x(y? — y*) + (x — x3)(12y% — 2)
and exact solution
u=si+s+(x =) - yh),

by the standard full multigrid algorithm 2, on the the '-shape, using the discretization
fulfills not the uniform band condition presented in figure 4.

We compute ki and wy € Vi which are approximations of . ..
@ stress intensity factor k = 1,

@ and the regular part of the exact solution w = s + (x — x3)(y? — y*).
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Numerical Experiments

Experiment 2: Full multigrid algorithm 1 (FMGAL)

e =|Mew — Wk\Hl(Q) .. .error in the energy norm,
[Fr—1 — 1 N
oy =logy ﬁ ... convergence rate for stress intensity factor,
K —1

€k—1 .
€ = Iog2 (T) ... convergence rate in the energy norm.
k

= Theoretical: oy = O(hi/3) and e, = O(hy)

k K o) ep €
1 7.920 x 10T

2 | 1.69992296014 8.364 x 10-T [ —0.07
31082 36706 2322 x 1077 | 1.85
1] 1.02037630458 3.456 x 107 [ 2.75
5 | 0.99943755129 6.236 x 10° | 247
6 | 1.00003984026 1.595 x 1072 | 1.97
7 | 1.00000536058 1.200 x 107 1.93
8 [ 1.00000234005 | 1.20 [ 1.170 x 107 1.84
9 | 1.0000005 9 [ 2.02 | 3.567 x 107 1.71
10 | 1.00000012632 | 2.19 | 1.204 x 107 [ 1.57
11 | 1.00000002876 | 2.13 | 4.397 x 107" | 1.45
12 | 1.00000000746 | 1.95

Figure: Results for FMGAL.
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Numerical Experiments

Experiment 3: Full multigrid algorithm 2 (FMGA?2)

Solving the Poisson equation (13)
—Au=f inQ, u=0 ondN.
with
f=—As; — Asy +6x(y? — y*) + (x — x3)(12y% — 2)
and exact solution
u=s+s+(x—x°) (- y*),

by the standard full multigrid algorithm 2, on the the '-shape, using the discretization
fulfills the uniform band condition presented in figure 5.

We compute Ky i, ko xk and wy € V). which are approximations of . ..
@ stress intensity factors kK1 = k2 = 1,

@ and the regular part of the exact solution w = (x — x3)(y? — y*).
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Numerical Experiments

Experiment 3: Full multigrid algorithm 2 (FMGA?2)

e =|Mew — Wk\Hl(Q) .. .error in the energy norm,

Kik—1— 1

‘ > ... convergence rate for stress intensity factor,
k=1

€k—1 .
€y =logy < - ) ... convergence rate in the energy norm.
k

= Theoretical: o = O(hi) and € = O(hz)

% Rk L Kok Tok ex %
1 1.124 x 10"
2 7.361 x 10T
3 169 | 1417 x 10T
1 | 1.000177 3.63 | 1.00029662 148 | 1131 x 107
5 [ 0.9999856171 1.000231 x 107
6 | 1.0000653041 1.00002651087 T
7 | 1.0000136298 1.00000976600 °
8 [ 1.0000044991 1.00000116447 S
9 [ 1.0000011279 | 2.00 | 1.00000029598 5
10 | 1.0000002659 | 2.08 | 1.00000008791 ’
11 | 1.0000000638 | 2.06 [ 1.00000002475

12 [ 1.0000000163 | 1.97 | 1.00000000585

Figure: Results for FMA2.
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Conclusions

Conclusions

@ The multigrid methods use the simplest finite element.

@ Since the grid are generated by connecting midpoints, it is
easy to parallelize the algorithms.

@ For more regular f, there exists a singular function
representations where the regular part w is also more regular.
In such cases multigrid methods with higher orders of
convergence can be developed using higher order elements.

@ Note that other superconvergence results which are less
restrictive that the one based on the “uniform band”
condition can also be used if the are available.
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