Part 2: Multigrid Methods for the computation of singular solutions and stress intensity factors

Wolfgang Krendl¹

¹Doctoral Program Computational Mathematics, Johannes Kepler University, Linz, Austria

Numeric Seminar, Linz, WS 2013

Used literature

S. C. BRENNER, Multigrid Methods for the computation of singular solutions and stress intensity factors : Corner singularities I., Department of Mathematics and Center for Computation and Technology, Mathematics of computation, April 1999, Volume 86, Number 226, Pages 559-583.

Introduction

Let be:

 $\{\mathcal{T}_k\}, \ k \geq 1$, a family of triangulations of Ω , where a regular subdivision \mathcal{T}_{k+1} of is obtained from \mathcal{T}_k by connecting the edges of the triangles in \mathcal{T}_k .

Figure: Triangulation

 $V_k = \{ v \in H_0^1(\Omega) : v |_{\mathcal{T}} \in \mathcal{P}_1 \ \forall \mathcal{T} \in \mathcal{T}_k \} \dots$ piecewise linear finite elements associated with \mathcal{T}_k .

Introduction

The discrete inner product $(\cdot, \cdot)_k$ defined by

$$(v_1,v_2)_k=h_k^2\sum_{ ext{vertices p of \mathcal{T}_k}}v_1(p)v_2(p)\quad orall v_1,v_2\in V_k.$$

 $\Rightarrow (v, v)_k$ is spectral equivalent to $\|v\|_{L^2(\Omega)}^2 \quad \forall v \in V_k.$

The operators $A_k : V_k \to V_k$ and $I_k^{k-1} : V_k \to V_{k-1}$ (Restriction Operator), defined by:

$$(A_k v_1, v_2)_k = \int_{\Omega} \nabla v_1 \cdot \nabla v_2 \, dx \quad \forall v_1, v_2 \in V_k \subset V_{k-1},$$

 $(I_k^{k-1} v, w)_{k-1} = (v, w)_k \qquad \forall v \in V_k, w \in V_{k-1}.$

 \Rightarrow A_k symmetric, positive definite and the spectral radius $\rho(A_k) \lesssim h_k^{-2}$.

Standard k-th level multigrid iteration

The k-th level multigrid iteration with initial guess z_0 yields $MG(k, z_0, g)$ as an approximate solution to the equation

$$A_k z = g$$
.

For k = 1, $MG(1, z_0, g)$ is the solution obtained from an exact solver, i.e. $MG(1, z_0, g) = A_1^{-1}g$.

For k > 1, there are two steps.

Smoothing Step: Let $z_l \in V_k$ $(1 \le l \le m)$ be defined recursively by the equations

$$z_l = z_{l-1} + \frac{1}{\gamma_k}(g - A_k z_{l-1}), \quad 1 \le l \le m, \quad (\text{Richardson Relaxation})$$

where $m \in \mathbb{N}_0$ independent of k, and $\gamma_k = Ch_k^{-2}$ dominates $\rho(A_k)$.

Correction Step: Let $\overline{g} = I_k^{k-1}(g - A_k z_m) \in V_{k-1}$ and $q_i \in V_{k-1}$ $(0 \le i \le p, p = 1 \text{ (V-cycle) or } p = 2 \text{ (W-cycle)})$ be defined recursively by

$$q_0 = 0 \quad \text{and} \quad q_i = \underbrace{MG(k-1, q_{i-1}, \overline{g})}_{\text{approx. of } A_{k-1}^{-1}\overline{g}}, \quad 1 \leq i \leq p.$$

The output is obtained by combining the two steps:

$$MG(k, \mathbf{z}_0, g) = \mathbf{z}_m + q_p.$$

Wolfgang Krendl

Multigrid Methods

2014-28-01 5 / 26

Full multigrid algorithm 1

If $f \in L^2(\Omega)$, we use the nested iteration to compute κ_k and w_k .

The nested iteration:

For k = 1,

$$w_1=A_1^{-1}g_1,\quad \text{where}\quad (g_1,v)_1=\int_\Omega f\ v\ dx\quad \forall v\in\ V_1.$$

We set

$$\kappa_1 = 0$$
 and $u_1 = w_1$.

For $k \geq 2$, $\kappa_k \in \mathbb{R}$ are computed by

$$\kappa_k = \frac{1}{\pi} \left(\int_{\Omega} f s_- dx + \int_{\Omega} u_{k-1} \Delta s_- dx \right),$$

and $w_k \in V_k$ is obtained recursively by

$$w_{k,0} = w_{k-1}, \qquad w_{k,l} = MG(k, w_{k,l-1}, g_k), \qquad w_k = w_{k,n} \quad \text{for } 1 \le l \le n,$$

where n is a positive integer independent of k, and $g_k \in V_k$ is defined by

$$(g_k, v)_k = \int_{\Omega} (fv \, dx + \kappa_k \Delta s_+) \, dx \quad \forall v \in V_k.$$

We define then u_k by

 $u_k = \kappa_k s_+ + w_k.$

Full multigrid algorithm 2

If $f \in H^1(\Omega)$, we use the nested iteration to compute $\kappa_{\ell,k}$, $\ell \in \mathcal{L}$ and w_k .

The nested iteration:

For k = 1,

$$w_1 = A_1^{-1}g_1$$
, where $(g_1, v)_1 = \int_{\Omega} f v \, dx \quad \forall v \in V_1$.

We set

$$\kappa_{\ell,1} = 0$$
 for $\ell \in \mathcal{L}$, and $u_1 = w_1$.

For $k \geq 2$, $\kappa_{\ell,k} \in \mathbb{R}$ are computed by

$$\kappa_k = \frac{1}{\ell \pi} \left(\int_{\Omega} f \, s_{+,\,-\ell} \, dx + \int_{\Omega} u_{k-1} \Delta s_{+,\,-\ell} \, dx \right) \quad \text{for} \ \ \ell \in \mathcal{L},$$

and $w_k \in V_k$ is obtained recursively by

$$w_{k,0} = \mathcal{J}_{k-1}^{k} w_{k-1}, \qquad w_{k,l} = MG(k, w_{k,l-1}, g_k), \qquad w_k = w_{k,n} \quad \text{for } 1 \le l \le n$$

where n is a positive integer independent of k, and $g_k \in V_k$ is defined by

$$(g_k, v)_k = \int_{\Omega} \left(\operatorname{fv} dx + \sum_{\ell \in \mathcal{L}} \kappa_{\ell,k} \Delta s_{+,\ell} \right) dx \quad \forall v \in V_k.$$

We define then u_k by

$$u_k = \sum_{\ell \in \mathcal{L}} \kappa_{\ell,k} s_{+,\ell} + w_k.$$

The intergrid transfer operator \mathcal{J}_{k-1}^k

For

$$Q_k \subset H_0^1(\Omega))(k = 0, 1, 2, ...)$$
 quadratic Lagrange finite element space associated with \mathcal{T}_k . (1)

we define the interpolation operators

$$\mathcal{I}_{k-2}^{k-1}: \mathcal{Q}_{k-2} o \mathcal{V}_{k-1}$$

 $w o v$, such that $v(p) = w(p) \quad \forall$ vertices pof \mathcal{T}_{k-1}

which is an isomorphism and

$$egin{array}{lll} \mathcal{I}_{k-2}^k : \mathcal{Q}_{k-2} o V_k \ & w o v, ext{ such that } v(p) = w(p) & orall ext{ vertices } p ext{ of } \mathcal{T}_k. \end{array}$$

and further the intergrid transfer operator:

$$\mathcal{J}_{k-1}^k = \mathcal{I}_{k-2}^k \circ (\mathcal{I}_{k-2}^{k-1})^{-1} : V_{k-1} \to V_k \quad \text{for } k = 2, 3, \dots.$$

Conclusions

Contraction properties for the k-th level iteration

Convergence result for the k-th level iteration in the energy norm:

Lemma

Let p = 1 (V-cycle) or p = 2 (W-cycle) and $m \ge 1$ in the k-th level iteration. Then there exists a $\delta < 1$, independent of k, such that

$$|z - MG(k, z_0, g)|_{H^1(\Omega)} \le \delta |z - z_0|_{H^1(\Omega)}.$$
 (2)

Convergence result for the k-th level iteration in the $\|\cdot\|_{H^{1-(\pi/\omega)+\epsilon}(\Omega)}$ norm:

Theorem

Let p = 2 (W-cycle), $0 < \delta < 1$, $0 < \epsilon < \pi/\omega$ and $\alpha_{\epsilon} = 1 - \pi/\omega \neq 1/2$. If the number of smoothing steps m in the k-th level iteration is sufficiently large, then we have

$$\|z - MG(k, z_0, g)\|_{H^{\alpha_{\epsilon}}(\Omega)} \leq \delta \|z - z_0\|_{H^{\alpha_{\epsilon}}(\Omega)}.$$
(3)

Convergence Analysis for the full multigrid algorithm 1

Theorem

Let p = 2 (W-cycle), $0 < \epsilon < \pi/\omega$, $\alpha_{\epsilon} = 1 - \pi/\omega \neq 1/2$ and the number of smoothing steps m in the k-th level iteration be sufficiently large, that (2) and (3), hold for $0 < \delta < 1$. If the number of nested iterations n is sufficiently large, then we have

$$|w - w_k|_{H^1(\Omega)} \lesssim h_k ||f||_{L^2(\Omega)},\tag{4}$$

$$\kappa - \kappa_k | \lesssim_{\epsilon} h_k^{1 + \pi/\omega - \epsilon} \|f\|_{L^2(\Omega)},$$
(5)

$$\|w - w_k\|_{H^{\alpha_{\epsilon}}(\Omega)} \lesssim_{\epsilon} h_k^{1 + \pi/\omega - \epsilon} \|f\|_{L^2(\Omega)}.$$
(6)

where w_k and κ_k are computed by Full multigrid algorithm 1.

Corollary

Under the assumption of theorem 3, we have

$$|u-u_k|_{H^1(\Omega)} \lesssim h_k \|f\|_{L^2(\Omega)}.$$

(7)

Convergence Analysis for the full multigrid algorithm 2

Properties of the intergrid transfer operator $\mathcal{J}_{k-1}^k:V_{k-1}
ightarrow V_k$

Lemma

We have the following estimates for \mathcal{J}_{k-1}^k :

$$|\mathcal{J}_{k-1}^{k}v|_{H^{1}(\Omega)} \lesssim h_{k}|v|_{H^{1}(\Omega)} \quad \forall v \in V_{k-1},$$
(8)

$$|\Pi_{k}\eta - \mathcal{J}_{k-1}^{k}\Pi_{k-1}\eta|_{H^{1}(\Omega)} \lesssim h_{k}^{1+t} \|\eta\|_{H^{2+t}(\Omega)} \quad \forall v \in V_{k-1},$$
(9)

where

$$\begin{array}{l} \Pi_k : H^1(\Omega) \to V_k \\ \\ w \to v, \text{ such that } v(p) = w(p) \quad \forall \text{ vertices } p \text{ of } \mathcal{T}_k, \end{array}$$

is the nodal interpolation operator associated with V_k and $0 \le t \le 1$.

Uniform band condition (UBC)

Definition

A uniform band in a triangulation is a collection of triangle between two parallel lines, such that any two triangles sharing a common side form a parallelogram (see figure 2). We say a triangulation satisfies the uniform band condition (UBC), if it can be divided completely into uniform bands (see figure 3).

Remark

One can always find a triangulation satisfying the uniform band condition for any polygonal domain whose vertices all have rational coordinates, and the uniform band condition is preserved by regular subdivision.

Wolfgang	Krend
----------	-------

Super convergence result

We define the Ritz projection operator $P_k: H^2(\Omega)
ightarrow V_k$ by

$$\int_{\Omega} \nabla(\eta - P_k \eta) \cdot \nabla v \, dx = 0 \quad \forall \eta \in H^1_0(\Omega), \ v \in V_k.$$

Lemma

Suppose the triangulations \mathcal{T}_k satisfy the uniform band condition and $\eta \in H^3(\Omega) \cap H^1_0(\Omega)$. Then

$$|\Pi_k\eta - P_k\eta|_{H^1(\Omega)} \lesssim h_k^2 \|\eta\|_{H^3(\Omega)}.$$

Corollary

Suppose the triangulations \mathcal{T}_k satisfy the uniform band condition and $\eta \in H^3(\Omega) \cap H^1_0(\Omega)$ for $0 \le t \le 1$. Then

$$|\Pi_k\eta - P_k\eta|_{H^1(\Omega)} \lesssim h_k^{1+t} \|\eta\|_{H^{2+t}(\Omega)}$$

Wolfgang Krendl

Multigrid Methods

Convergence Analysis for the full multigrid algorithm 2

Using this previous superconvergence result we can show:

Theorem

Let $f \in H^1(\Omega)$. Assume that the triangulations \mathcal{T}_k satisfy the uniform band condition, p = 1 (V-cycle), or p = 2 (W-cycle), and $m \ge 1$. If the number of nested iterations n is sufficiently large, then we have

$$\left\| \mathbf{h}_{k} \mathbf{w} - \mathbf{w}_{k} \right\|_{H^{1}(\Omega)} \lesssim_{\epsilon} h_{k}^{2-\epsilon} \left\| f \right\|_{H^{1}(\Omega)},\tag{10}$$

$$\sum_{\ell \in \mathcal{L}} |\kappa_{\ell} - \kappa_{\ell,k}| \lesssim_{\epsilon} h_k^{2-\epsilon} \|f\|_{H^1(\Omega)},\tag{11}$$

where $\mathcal{L} = \{\ell \in \mathbb{N} : \ell \pi / \omega < 2\}$ and w_k , $\kappa_{l,k}$ are computed by Full multigrid algorithm 2.

Corollary

Under the assumption of theorem 7, we have

$$|u - u_k|_{H^1(\Omega)} \lesssim h_k \|f\|_{H^1(\Omega)} \quad \text{and} \quad \max_p |u(p) - u_k(p)|_{H^1(\Omega)} \lesssim_{\epsilon} h_k^{2-\epsilon} \|f\|_{H^1(\Omega)}, \tag{12}$$

where the maximum is taken over all the vertices $p \in \mathcal{T}_k$.

Remark

If for all internal angles ω of Ω we have $\ell \omega \neq \pi/2$ for all $\ell \in \mathbb{N}$, then $w \in H^3(\Omega)$,

from which follows the ϵ -independent estimates:

$$\begin{aligned} |\Pi_k w - w_k|_{H^1(\Omega)} \lesssim h_k^2 \|f\|_{H^1(\Omega)}, \\ \sum_{\ell \in \mathcal{L}} |\kappa_\ell - \kappa_{\ell,k}| \lesssim h_k^2 \|f\|_{H^1(\Omega)}, \\ \max_p |u(p) - u_k(p)|_{H^1(\Omega)} \lesssim h_k^2 |\ln h_k|^{1/2} \|f\|_{H^1(\Omega)} \end{aligned}$$

Model data:

Domain Ω :

 Γ -shaped domain (see figures 4 and 5) with vertices (0,0), (0,1), (1,1), (-1,1), (-1,-1) and (0,-1).

Figure: Γ-shape triangulation (without UBC)

Figure: Γ-shape triangulation (with UBC)

Model data:

Finite element: P1-Lagrange finite element.

Meshsize:

The meshsize h_k for the k-th level grid is taken by 2^{-k} .

Multigrid parameters:

Using a W-cycle k-th (p=2) level iteration, with 5 smoothing steps (m=n=5). Why m = n = 5? Because the numerical results do not appear to improve for any larger m or n.

Convergence results

Numerical Experiments

Conclusions

Singular function on the Γ -shaped domain:

$$s_1(r,\theta) = \eta(r)r^{2/3}\sin(2/3\theta),$$

 $s_2(r,\theta) = \eta(r)r^{4/3}\sin(4/3\theta).$

Cut-off function η :

$$\eta(r) = \begin{cases} 1 & 0 \le r \le \frac{1}{4} \\ -192r^5 + 480r^4 - 440r^3 + 180r^2 - \frac{135r}{4} + \frac{27}{8}, & \frac{1}{4} \le r \le \frac{3}{4}, \\ 0 & 3/4 \le r. \end{cases}$$

(see figure 6).

Figure: Cut off function η

Input data:

We will now compute a solution of the Poisson equation

$$\begin{aligned} -\Delta u &= f & \text{in } \Omega, \\ u &= 0 & \text{on } \partial \Omega. \end{aligned} \tag{13}$$

using

- Standard full multigrid algorithm.
- Full mulitgrid algorithm 1.
- Full mulitgrid algorithm 2.

for

$$f = -\Delta s_1 - \Delta s_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2),$$

with exact solution

$$u = \underbrace{s_1}_{\in H^1(\Omega) \land \notin H^2(\Omega)} + \underbrace{s_2}_{\in H^2(\Omega) \land \notin H^{3-\epsilon}(\Omega)} + (x - x^3)(y^2 - y^4)$$
 (exact solution).

Experiment 1: Standard full multigrid algorithm (SFA)

Solving the Poisson equation (13)

$$-\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

with

$$f = -\Delta s_1 - \Delta s_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)$$

and exact solution

$$u = s_1 + s_2 + (x - x^3)(y^2 - y^4),$$

by the standard full multigrid algorithm, on the the Γ -shape, using the discretization fulfills not the uniform band condition presented in figure 4.

Approximations for the stress intensity factors κ_k are computed by the extraction formula

$$\kappa_h = rac{1}{\pi} \left(\int_\Omega f s_- \, dx + \int_\Omega u \Delta s_- \, dx
ight),$$

using the P1 finite element solution u_k obtained by standard full multigrid algorithm.

Experiment 1: Standard full multigrid algorithm (SFA)

$$e_k = |\Pi_k u - u_k|_{H^1(\Omega)} \dots$$
 error in the energy norm,

$$\begin{split} \sigma_k &= \log_2\left(\frac{|\kappa_{k-1}-1|}{|\kappa_k-1|}\right)\ldots \text{ convergence rate for stress intensity factor}\\ \epsilon_k &= \log_2\left(\frac{e_{k-1}}{e_k}\right)\ldots \text{ convergence rate in the energy norm.} \end{split}$$

 \Rightarrow Theoretical: $\sigma_k = \mathcal{O}(h_k^{4/3})$ and $\epsilon_k = \mathcal{O}(h_k^{2/3})$

k	κ_k	σ_k	e_k	ϵ_k
1	1.6999229601	-	$1.27093 imes 10^0$	-
2	1.2589102299	1.43	$5.91072 imes 10^{-1}$	1.1045
3	1.1036407706	1.32	$1.61387 imes 10^{-1}$	1.8728
4	1.0287080790	1.85	$5.74371 imes 10^{-2}$	1.4905
5	1.0073492045	1.97	$2.76732 imes 10^{-2}$	1.0535
6	1.0020544785	1.84	$1.64752 imes 10^{-2}$	0.7482
7	1.0005531037	1.89	$1.02811 imes 10^{-2}$	0.6803
8	1.0001571227	1.82	$6.46930 imes 10^{-2}$	0.6683
9	1.0000458701	1.78	$4.07502 imes 10^{-3}$	0.6668
10	1.0000142397	1.69	$2.56715 imes 10^{-3}$	0.6666
11	1.0000046460	1.62	$1.61722 imes 10^{-3}$	0.6666

Figure: Results for SFA.

Experiment 2: Full multigrid algorithm 1 (FMGA1)

Solving the Poisson equation

$$-\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

with

$$f = -\Delta s_1 - \Delta s_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)$$

and exact solution

$$u = s_1 + s_2 + (x - x^3)(y^2 - y^4),$$

by the standard full multigrid algorithm 2, on the the Γ -shape, using the discretization fulfills not the uniform band condition presented in figure 4.

We compute κ_k and $w_k \in V_k$ which are approximations of ...

- stress intensity factor κ = 1,
- and the regular part of the exact solution $w = s_2 + (x x^3)(y^2 y^4)$.

Experiment 2: Full multigrid algorithm 1 (FMGA1)

$$\begin{split} e_k &= |\Pi_k w - w_k|_{H^1(\Omega)} \dots \text{ error in the energy norm,} \\ \sigma_k &= \log_2 \left(\frac{|\kappa_{k-1} - 1|}{|\kappa_k - 1|} \right) \dots \text{ convergence rate for stress intensity factor,} \\ \epsilon_k &= \log_2 \left(\frac{e_{k-1}}{e_k} \right) \dots \text{ convergence rate in the energy norm.} \end{split}$$

 \Rightarrow Theoretical: $\sigma_k = \mathcal{O}(h_k^{5/3})$ and $\epsilon_k = \mathcal{O}(h_k)$

. --

k	κ_k	σ_k	e_k	ϵ_k
1	-	-	$7.929 imes10^{-1}$	-
2	1.69992296014	-	$8.364 imes10^{-1}$	-0.07
3	0.82132136706	1.97	$2.322 imes 10^{-1}$	1.85
4	1.02037630458	3.13	$3.456 imes10^{-2}$	2.75
5	0.99943755129	5.18	$6.236 imes10^{-3}$	2.47
6	1.00003984026	3.82	$1.595 imes10^{-3}$	1.97
7	1.00000536058	2.89	$4.200 imes10^{-4}$	1.93
8	1.00000234005	1.20	$1.170 imes10^{-4}$	1.84
9	1.00000057569	2.02	$3.567 imes10^{-5}$	1.71
10	1.00000012632	2.19	$1.204 imes 10^{-5}$	1.57
11	1.0000002876	2.13	$4.397 imes10^{-6}$	1.45
12	1.0000000746	1.95	-	-

Figure: Results for FMGA1.

Experiment 3: Full multigrid algorithm 2 (FMGA2)

Solving the Poisson equation (13)

$$-\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

with

$$f = -\Delta s_1 - \Delta s_2 + 6x(y^2 - y^4) + (x - x^3)(12y^2 - 2)$$

and exact solution

$$u = s_1 + s_2 + (x - x^3)(y^2 - y^4),$$

by the standard full multigrid algorithm 2, on the the Γ -shape, using the discretization fulfills the uniform band condition presented in figure 5.

We compute $\kappa_{1,k}, \kappa_{2,k}$ and $w_k \in V_k$ which are approximations of ...

- stress intensity factors κ₁ = κ₂ = 1,
- and the regular part of the exact solution $w = (x x^3)(y^2 y^4)$.

Experiment 3: Full multigrid algorithm 2 (FMGA2)

$$e_k = |\Pi_k w - w_k|_{H^1(\Omega)} \dots$$
 error in the energy norm,

$$\begin{split} \sigma_{i,k} &= \log_2\left(\frac{|\kappa_{i,k-1}-1|}{|\kappa_{i,k}-1|}\right) \dots \text{convergence rate for stress intensity factor} \\ \epsilon_k &= \log_2\left(\frac{e_{k-1}}{e_k}\right) \dots \text{convergence rate in the energy norm.} \end{split}$$

 $\Rightarrow \text{Theoretical:} \quad \sigma_{i,k} = \mathcal{O}(h_k^2) \quad \text{and} \quad \epsilon_k = \mathcal{O}(h_k^2)$

k	$\kappa_{1,k}$	$\sigma_{1,k}$	$\kappa_{2,k}$	$\sigma_{2,k}$	e_k	ϵ_k
1	-	-	-	-	1.124×10^{0}	-
2	1.6229151283	-	1.17131298888	-	7.361×10^{-1}	0.61
3	0.8859991798	2.45	0.99336080108	4.69	$1.417 imes10^{-1}$	2.38
4	1.0091773397	3.63	1.00029662538	4.48	$1.131 imes10^{-2}$	3.65
5	0.9999856171	9.32	1.00023130682	0.36	$5.829 imes10^{-4}$	4.28
6	1.0000653041	-2.18	1.00002651087	3.13	1.551×10^{-4}	1.91
7	1.0000136298	2.26	1.00000976600	1.44	$3.636 imes10^{-5}$	2.09
8	1.0000044994	1.60	1.00000116447	3.07	$9.574 imes10^{-6}$	1.93
9	1.0000011279	2.00	1.00000029598	1.98	2.376×10^{-6}	2.01
10	1.000002659	2.08	1.0000008791	1.75	$5.810 imes10^{-7}$	2.03
11	1.000000638	2.06	1.0000002475	1.82	$1.433 imes10^{-7}$	2.02
12	1.000000163	1.97	1.0000000585	2.08	-	-

Figure: Results for FMA2.

Conclusions

- The multigrid methods use the simplest finite element.
- Since the grid are generated by connecting midpoints, it is easy to parallelize the algorithms.
- For more regular f, there exists a singular function representations where the regular part w is also more regular. In such cases multigrid methods with higher orders of convergence can be developed using higher order elements.
- Note that other superconvergence results which are less restrictive that the one based on the "uniform band" condition can also be used if the are available.