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Introduction

Let be:

{Tk}, k ≥ 1, a family of triangulations of Ω, where a regular subdivision
Tk+1 of is obtained from Tk by connecting the edges of the triangles in
Tk .

Figure: Triangulation

Vk = {v ∈ H1
0 (Ω) : v |T ∈ P1 ∀T ∈ Tk} . . . piecewise linear finite

elements associated with Tk .
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Introduction

The discrete inner product (·, ·)k defined by

(v1, v2)k = h2
k

∑
vertices p of Tk

v1(p)v2(p) ∀v1, v2 ∈ Vk .

⇒ (v , v)k is spectral equivalent to ‖v‖2
L2(Ω) ∀v ∈ Vk .

The operators Ak : Vk → Vk and I k−1
k : Vk → Vk−1 (Restriction Operator),

defined by:

(Ak v1, v2)k =

∫
Ω

∇v1 · ∇v2 dx ∀v1, v2 ∈ Vk ⊂ Vk−1,

(I k−1
k v ,w)k−1 =(v ,w)k ∀v ∈ Vk ,w ∈ Vk−1.

⇒ Ak symmetric, positive definite and the spectralradius ρ(Ak ) . h−2
k .
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Standard k-th level multigrid iteration
The k-th level multigrid iteration with initial guess z0 yields MG(k, z0, g) as an approximate solution to the
equation

Ak z = g.

For k = 1, MG(1, z0, g) is the solution obtained from an exact solver, i.e. MG(1, z0, g) = A−1
1 g.

For k > 1, there are two steps.

Smoothing Step: Let zl ∈ Vk (1 ≤ l ≤ m) be defined recursively by the equations

zl = zl−1 +
1

γk

(g − Ak zl−1), 1 ≤ l ≤ m, (Richardson Relaxation)

where m ∈ N0 independent of k, and γk = Ch−2
k

dominates ρ(Ak ).

Correction Step: Let g = I k−1
k

(g − Ak zm) ∈ Vk−1 and qi ∈ Vk−1
(

0 ≤ i ≤ p, p = 1 (V-cycle) or

p = 2 (W-cycle)
)

be defined recursively by

q0 = 0 and qi = MG(k − 1, qi−1, g)︸ ︷︷ ︸
approx. of A

−1
k−1

g

, 1 ≤ i ≤ p.

The output is obtained by combining the two steps:

MG(k, z0, g) = zm + qp .
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Full multigrid algorithm 1
If f ∈ L2(Ω), we use the nested iteration to compute κk and wk .

The nested iteration:

For k = 1,

w1 = A−1
1 g1, where (g1, v)1 =

∫
Ω

f v dx ∀v ∈ V1.

We set

κ1 = 0 and u1 = w1.

For k ≥ 2, κk ∈ R are computed by

κk =
1

π

(∫
Ω

f s− dx +

∫
Ω

uk−1∆s− dx

)
,

and wk ∈ Vk is obtained recursively by

wk,0 = wk−1, wk,l = MG(k,wk,l−1, gk ), wk = wk,n for 1 ≤ l ≤ n,

where n is a positive integer independent of k, and gk ∈ Vk is defined by

(gk , v)k =

∫
Ω

(fv dx + κk ∆s+) dx ∀v ∈ Vk .

We define then uk by

uk = κk s+ + wk .

Wolfgang Krendl Multigrid Methods 2014-28-01 6 / 26



The methods Convergence results Numerical Experiments Conclusions

Full multigrid algorithm 2
If f ∈ H1(Ω), we use the nested iteration to compute κ`,k , ` ∈ L and wk .

The nested iteration:

For k = 1,

w1 = A−1
1 g1, where (g1, v)1 =

∫
Ω

f v dx ∀v ∈ V1.

We set

κ`,1 = 0 for` ∈ L, and u1 = w1.

For k ≥ 2, κ`,k ∈ R are computed by

κk =
1

`π

(∫
Ω

f s+,−` dx +

∫
Ω

uk−1∆s+,−` dx

)
for ` ∈ L,

and wk ∈ Vk is obtained recursively by

wk,0 = J k
k−1wk−1, wk,l = MG(k,wk,l−1, gk ), wk = wk,n for 1 ≤ l ≤ n,

where n is a positive integer independent of k, and gk ∈ Vk is defined by

(gk , v)k =

∫
Ω

fv dx +
∑
`∈L

κ`,k ∆s+,`

 dx ∀v ∈ Vk .

We define then uk by

uk =
∑
`∈L

κ`,k s+,` + wk .
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The intergrid transfer operator J k
k−1

For

Qk ⊂ H1
0 (Ω))(k = 0, 1, 2, . . . ) quadratic Lagrange finite element space associated with Tk . (1)

we define the interpolation operators

Ik−1
k−2 : Qk−2 → Vk−1

w → v, such that v(p) = w(p) ∀ vertices pof Tk−1

which is an isomorphism and

Ik
k−2 : Qk−2 → Vk

w → v, such that v(p) = w(p) ∀ vertices p of Tk ,

and further the intergrid transfer operator:

J k
k−1 = Ik

k−2 ◦ (Ik−1
k−2 )−1 : Vk−1 → Vk for k = 2, 3, . . . .
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Contraction properties for the k-th level iteration

Convergence result for the k-th level iteration in the energy norm:

Lemma

Let p = 1 (V-cycle) or p = 2 (W-cycle) and m ≥ 1 in the k-th level iteration.
Then there exists a δ < 1, independent of k, such that

|z −MG(k, z0, g)|H1(Ω) ≤ δ|z − z0|H1(Ω). (2)

Convergence result for the k-th level iteration in the ‖ · ‖H1−(π/ω)+ε(Ω) norm:

Theorem

Let p = 2 (W-cycle), 0 < δ < 1, 0 < ε < π/ω and αε = 1− π/ω 6= 1/2. If the
number of smoothing steps m in the k-th level iteration is sufficiently large,
then we have

‖z −MG(k, z0, g)‖Hαε (Ω) ≤ δ‖z − z0‖Hαε (Ω). (3)
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Convergence Analysis for the full multigrid algorithm 1

Theorem

Let p = 2 (W-cycle), 0 < ε < π/ω, αε = 1−π/ω 6= 1/2 and the number of smoothing
steps m in the k-th level iteration be sufficiently large, that (2) and (3), hold for
0 < δ < 1. If the number of nested iterations n is sufficiently large, then we have

|w − wk |H1(Ω) .hk‖f ‖L2(Ω), (4)

|κ− κk | .εh
1+π/ω−ε
k ‖f ‖L2(Ω), (5)

‖w − wk‖Hαε (Ω) .εh
1+π/ω−ε
k ‖f ‖L2(Ω). (6)

where wk and κk are computed by Full multigrid algorithm 1.

Corollary

Under the assumption of theorem 3, we have

|u − uk |H1(Ω) . hk‖f ‖L2(Ω). (7)
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Convergence Analysis for the full multigrid algorithm 2

Properties of the intergrid transfer operator J k
k−1 : Vk−1 → Vk

Lemma

We have the following estimates for J k
k−1:

|J k
k−1v|

H1(Ω)
.hk |v|H1(Ω)

∀v ∈ Vk−1, (8)

|Πkη − J
k
k−1Πk−1η|H1(Ω)

.h1+t
k ‖η‖

H2+t (Ω)
∀v ∈ Vk−1, (9)

where

Πk : H1(Ω)→ Vk

w → v, such that v(p) = w(p) ∀ vertices p of Tk ,

is the nodal interpolation operator associated with Vk and 0 ≤ t ≤ 1.
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Uniform band condition (UBC)

Definition

A uniform band in a triangulation is a collection of triangle between two parallel lines, such that any two triangle s
sharing a common side form a parallelogram (see figure 2). We say a triangulation satisfies the uniform band
condition (UBC), if it can be divided completely into uniform bands (see figure 3).

Figure Figure

Remark

One can always find a triangulation satisfying the uniform band condition for any polygonal domain whose vertices
all have rational coordinates, and the uniform band condition is preserved by regular subdivision.
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Super convergence result

We define the Ritz projection operator Pk : H2(Ω)→ Vk by∫
Ω
∇(η − Pkη) · ∇v dx = 0 ∀η ∈ H1

0 (Ω), v ∈ Vk .

Lemma

Suppose the triangulations Tk satisfy the uniform band condition and
η ∈ H3(Ω) ∩ H1

0 (Ω). Then

|Πkη − Pkη|H1(Ω) .h2
k‖η‖H3(Ω).

Corollary

Suppose the triangulations Tk satisfy the uniform band condition and
η ∈ H3(Ω) ∩ H1

0 (Ω) for 0 ≤ t ≤ 1. Then

|Πkη − Pkη|H1(Ω) .h1+t
k ‖η‖H2+t (Ω).
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Convergence Analysis for the full multigrid algorithm 2

Using this previous superconvergence result we can show:

Theorem

Let f ∈ H1(Ω). Assume that the triangulations Tk satisfy the uniform band condition, p = 1 (V-cycle), or p = 2
(W-cycle), and m ≥ 1. If the number of nested iterations n is sufficiently large, then we have

|Πk w − wk |H1(Ω)
.εh2−ε

k ‖f ‖
H1(Ω)

, (10)∑
`∈L
|κ` − κ`,k | .εh2−ε

k ‖f ‖
H1(Ω)

, (11)

where L = {` ∈ N : `π/ω < 2} and wk , κl,k are computed by Full multigrid algorithm 2.

Corollary

Under the assumption of theorem 7, we have

|u − uk |H1(Ω)
. hk‖f ‖

H1(Ω)
and max

p
|u(p)− uk (p)|

H1(Ω)
.ε h2−ε

k ‖f ‖
H1(Ω)

, (12)

where the maximum is taken over all the vertices p ∈ Tk .
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Remark

If for all internal angles ω of Ω we have `ω 6= π/2 for all ` ∈ N, then

w ∈ H3(Ω),

from which follows the ε-independent estimates:

|Πkw − wk |H1(Ω) .h2
k‖f ‖H1(Ω),∑

`∈L

|κ` − κ`,k | .h2
k‖f ‖H1(Ω),

max
p
|u(p)− uk (p)|H1(Ω) .h2

k | ln hk |1/2‖f ‖H1(Ω).

Wolfgang Krendl Multigrid Methods 2014-28-01 15 / 26



The methods Convergence results Numerical Experiments Conclusions

Model data:

Domain Ω:
Γ-shaped domain (see figures 4 and 5) with vertices
(0, 0), (0, 1), (1, 1), (−1, 1), (−1,−1) and (0,−1).

Figure: Γ-shape triangulation
(without UBC)

Figure: Γ-shape triangulation
(with UBC)
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Model data:

Finite element:
P1-Lagrange finite element.

Meshsize:
The meshsize hk for the k-th level grid is taken by 2−k .

Multigrid parameters:
Using a W-cycle k-th (p=2) level iteration, with 5 smoothing steps
(m=n=5). Why m = n = 5? Because the numerical results do not
appear to improve for any larger m or n.
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Singular function on the Γ-shaped domain:

s1(r , θ) =η(r)r 2/3 sin(2/3θ),

s2(r , θ) =η(r)r 4/3 sin(4/3θ).

Cut-off function η:

η(r) =


1 0 ≤ r ≤ 1

4

−192r 5 + 480r 4 − 440r 3 + 180r 2 − 135r
4

+ 27
8
, 1

4
≤ r ≤ 3

4
,

0 3/4 ≤ r .

(see figure 6).

Figure: Cut off function η
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Input data:

We will now compute a solution of the Poisson equation

−∆u =f in Ω,

u =0 on ∂Ω.
(13)

using

Standard full multigrid algorithm.

Full mulitgrid algorithm 1.

Full mulitgrid algorithm 2.

for

f =−∆s1 −∆s2 + 6x(y2 − y4) + (x − x3)(12y2 − 2),

with exact solution

u = s1︸︷︷︸
∈H1(Ω) ∧ 6∈H2(Ω)

+ s2︸︷︷︸
∈H2(Ω) ∧ 6∈H3−ε(Ω)

+(x − x3)(y2 − y4) (exact solution).
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Experiment 1: Standard full multigrid algorithm (SFA)

Solving the Poisson equation (13)

−∆u =f in Ω, u = 0 on ∂Ω.

with

f = −∆s1 −∆s2 + 6x(y2 − y4) + (x − x3)(12y2 − 2)

and exact solution

u = s1 + s2 + (x − x3)(y2 − y4),

by the standard full multigrid algorithm, on the the Γ-shape, using the discretization
fulfills not the uniform band condition presented in figure 4.

Approximations for the stress intensity factors κk are computed by the extraction
formula

κh =
1

π

(∫
Ω

fs− dx +

∫
Ω

u∆s− dx

)
,

using the P1 finite element solution uk obtained by standard full multigrid algorithm.
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Experiment 1: Standard full multigrid algorithm (SFA)

ek =|Πk u − uk |H1(Ω)
. . . error in the energy norm,

σk = log2

(
|κk−1 − 1|
|κk − 1|

)
. . . convergence rate for stress intensity factor,

εk = log2

(
ek−1

ek

)
. . . convergence rate in the energy norm.

⇒ Theoretical: σk = O(h
4/3
k

) and εk = O(h
2/3
k

)

Figure: Results for SFA.
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Experiment 2: Full multigrid algorithm 1 (FMGA1)

Solving the Poisson equation

−∆u =f in Ω, u = 0 on ∂Ω.

with

f = −∆s1 −∆s2 + 6x(y2 − y4) + (x − x3)(12y2 − 2)

and exact solution

u = s1 + s2 + (x − x3)(y2 − y4),

by the standard full multigrid algorithm 2, on the the Γ-shape, using the discretization
fulfills not the uniform band condition presented in figure 4.

We compute κk and wk ∈ Vk which are approximations of . . .

stress intensity factor κ = 1,

and the regular part of the exact solution w = s2 + (x − x3)(y2 − y4).
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Experiment 2: Full multigrid algorithm 1 (FMGA1)

ek =|Πk w − wk |H1(Ω)
. . . error in the energy norm,

σk = log2

(
|κk−1 − 1|
|κk − 1|

)
. . . convergence rate for stress intensity factor,

εk = log2

(
ek−1

ek

)
. . . convergence rate in the energy norm.

⇒ Theoretical: σk = O(h
5/3
k

) and εk = O(hk )

Figure: Results for FMGA1.
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Experiment 3: Full multigrid algorithm 2 (FMGA2)

Solving the Poisson equation (13)

−∆u =f in Ω, u = 0 on ∂Ω.

with

f = −∆s1 −∆s2 + 6x(y2 − y4) + (x − x3)(12y2 − 2)

and exact solution

u = s1 + s2 + (x − x3)(y2 − y4),

by the standard full multigrid algorithm 2, on the the Γ-shape, using the discretization
fulfills the uniform band condition presented in figure 5.

We compute κ1,k , κ2,k and wk ∈ Vk which are approximations of . . .

stress intensity factors κ1 = κ2 = 1,

and the regular part of the exact solution w = (x − x3)(y2 − y4).
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Experiment 3: Full multigrid algorithm 2 (FMGA2)

ek =|Πk w − wk |H1(Ω)
. . . error in the energy norm,

σi,k = log2

(
|κi,k−1 − 1|
|κi,k − 1|

)
. . . convergence rate for stress intensity factor,

εk = log2

(
ek−1

ek

)
. . . convergence rate in the energy norm.

⇒ Theoretical: σi,k = O(h2
k ) and εk = O(h2

k )

Figure: Results for FMA2.
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Conclusions

The multigrid methods use the simplest finite element.

Since the grid are generated by connecting midpoints, it is
easy to parallelize the algorithms.

For more regular f , there exists a singular function
representations where the regular part w is also more regular.
In such cases multigrid methods with higher orders of
convergence can be developed using higher order elements.

Note that other superconvergence results which are less
restrictive that the one based on the “uniform band”
condition can also be used if the are available.
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