Fredholm Property of the Δ -operator in 2-dimensional polygonal domain

Wolfgang Krendl¹

¹Doctoral Program Computational Mathematics, Johannes Kepler University, Linz, Austria

Numeric Seminar, Linz, WS 2013

Used literature

P. GRISWARD, Singularities in boundary value problems, University of Nice (France), Masson Springer, Berlin (1992).

Pages: 43 - 49.

Basic a-priori inequalities in polygons

Theorem

For every $v \in V^2(\Omega)$ where

$$V^2=\{v\in H^2(\Omega): \quad \gamma_j(v)=0 ext{ for } j\in \mathcal{D} ext{ and } \gamma_j(\partial v/\partial
u_j)=0 ext{ for } j\in \mathcal{N}\}.$$

the identity

$$||\Delta u||_{0,\Omega}^2 = ||D_1^2 u||_{0,\Omega}^2 + ||D_1^2 u||_{0,\Omega}^2 + 2||D_1 D_2 u||_{0,\Omega}^2$$

holds.

For the proof of this theorem we use the following lemma:

Lemma

The identity

$$\int_{\Omega} D_1^2 u \, D_2^2 u \, \mathrm{d}x = \int_{\Omega} (D_1 D_2 u)^2 \, \mathrm{d}x$$

holds for all $u \in V^2(\Omega)$.

Wolfgang Krendl

Optimal Control for Stokes Flow

Basic a-priori inequalities in polygons

Theorem

Assume that Ω is a bounded polygonal open subset of \mathbb{R}^2 and that \mathcal{D} , is not empty. Then there exists a constant $C(\Omega)$ such that:

$$\|u\|_{2,\Omega} \le C(\Omega) \|\Delta u\|_{0,\Omega},\tag{1}$$

for every $u \in V^2(\Omega)$.

Fredholm property in 2d

Let us consider the operator

$$\Delta u: V^2(\Omega) \to L^2(\Omega).$$

The inequality

$$\|u\|_{2,\Omega} \leq C(\Omega) \|\Delta u\|_{0,\Omega},$$

proved in the previous Theorem already shows that Δ is injective and has a closed range. The question is now:

How is the range $\mathcal{R}(\Delta)$ of the Δ -operator completely identified?

To answer this question, it is enough to identify its orthogonal,

$$\mathcal{R}(\Delta)^{\perp} = \left\{ v \in L^2(\Omega) : \int_{\Omega} v \Delta u \, \mathrm{d}x = 0 \text{ for all } u \in V^2(\Omega)
ight\},$$

since

$$L^{2}(\Omega) = \mathcal{R}(\Delta) + \mathcal{R}(\Delta)^{\perp}$$

Wolfgang Krendl

Optimal Control for Stokes Flow

Notation: For positive s we denote by $\tilde{H}^{s}(\Gamma_{j})$ the space of all u defined in Γ_{j} such that $\tilde{u} \in H^{s}(\mathbb{R})$, where \tilde{u} is the continuation of u by zero outside Γ_{j} .

Lemma

Let be $v \in \mathcal{R}(\Delta)^{\perp}$. Then v belongs to

$$D(\Delta, L^2(\Omega)) = \{ v \in L^2(\Omega) : \Delta v \in L^2(\Omega) \}$$

and is solution of the adjoint boundary value problem

$$\begin{split} \Delta v &= 0 \quad \text{in } \Omega, \\ \gamma_j(v) &= 0 \quad \text{in } \tilde{H}^{3/2}(\Gamma_j) \quad \text{for } j \in \mathcal{D}, \\ \gamma_j(\partial v / \partial \nu_j) &= 0 \quad \text{in } \tilde{H}^{1/2}(\Gamma_j) \quad \text{for } j \in \mathcal{N}. \end{split}$$

Notation:

- $\mathcal{M}' \dots$ set of all $j \in \mathcal{N}$ such that $j + 1 \in \mathcal{D}$, and the angle ω_j is either 90° or 270° degrees.
- $\mathcal{M}'' \dots$ set of all $j \in \mathcal{D}$ such that $j + 1 \in \mathcal{N}$ and the angle ω_j is either 90° or 270° degrees.

Lemma

Every $v \in \mathcal{R}(\Delta)^{\perp}$ satisfies:

$$\int_{\Omega} v \Delta \eta_j \, \mathrm{d}x = 0 \quad \forall j \in \mathcal{N}^2,$$

$$\int_{\Omega} v \Delta (y_j \eta_j) \, \mathrm{d}x = 0 \quad \forall j \in \mathcal{M}',$$

$$\int_{\Omega} v \Delta (x_j \eta_j) \, \mathrm{d}x = 0 \quad \forall j \in \mathcal{M}''.$$
(2)

Theorem

Let $v \in D(\Delta, L^2(\Omega))$ be such that

$$\begin{split} \Delta v &= 0 \quad \text{in } \Omega, \\ \gamma_j(v) &= 0 \quad \text{in } \tilde{H}^{3/2}(\Gamma_j) \quad \text{for } j \in \mathcal{D}, \\ \gamma_i(\partial v / \partial \nu_j) &= 0 \quad \text{in } \tilde{H}^{1/2}(\Gamma_j) \quad \text{for } j \in \mathcal{N}. \end{split}$$

and assume in addition that v fulfills the conditions (2), then $v \in \mathcal{R}(\Delta)^{\perp}$.

Lemma

Let be $v \in \mathcal{R}(\Delta)^{\perp}$, then $v \in C^{\infty}(\overline{\Omega} \setminus V)$ where V is any neighborhood of the corners S_{j} .