Zenger Corrections

Johannes Höller

21.1.2014

Content

(1) Modifying the bilinear form
(2) regularized δ-function
(3) point error estimates

Table of Contents

(1) Modifying the bilinear form
(2) regularized δ-function

3 point error estimates

Energy Functional

Problem definition

The problem we are interested in is: Find $u \in V$:

$$
\begin{align*}
a(u, v) & =\langle f, v\rangle \forall v \in V \tag{1}\\
\left.u\right|_{\partial \Omega} & =0
\end{align*}
$$

where $a(u, v):=\int_{\Omega}(\nabla u)(\nabla v) d x$ and without loss of generality $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x<0 \vee y<0\right\}$ is an L-shape domain with the non-convex corner in the origin. $V=H_{0}^{1}(\Omega)$ or alternatively $V=V_{h}$.

Definition:

The functional $E(u):=\frac{1}{2} a(u, u)-\langle f, u\rangle$ is called energy functional.

Numerical problems

- We know that for the given problem there is a singular part to the solution
- Ignoring this in numerical treatment is bad
- Zenger proposed to counteract by changing the problem just a little
- consider a modified bilinear form

$$
\begin{equation*}
a_{\gamma}\left(u_{h}, v_{h}\right)=a\left(u_{h}, v_{h}\right)-\underbrace{\gamma K\left(u_{h}, v_{h}\right)}_{=: K_{\gamma}\left(u_{h}, v_{h}\right)} \tag{2}
\end{equation*}
$$

for the discretized problem.
Localized Correction
The correction $K_{\gamma}\left(u_{h}, v_{h}\right)$ should be local, that is:

$$
\begin{equation*}
K_{\gamma}\left(u_{h}, v_{h}\right)=\gamma \sum_{\{i, j\} \in N(0,0)} \beta_{i j} u_{h}\left(x_{i}\right) v_{h}\left(x_{j}\right) \tag{3}
\end{equation*}
$$

General Properties

Let u be the solution to (1) and $R_{h} u$ the solution of the corresponding (unmodified) discrete problem. Then we know:

- Equivalent minimization problem:

$$
\begin{equation*}
a(u, v)=\langle f, v\rangle \forall v \in V \Leftrightarrow u \text { minimizes } E(u) \tag{4}
\end{equation*}
$$

- Galerkin Orthogonality:

$$
\begin{equation*}
a\left(u-R_{h} u, v_{h}\right)=0 \forall v_{h} \in V_{h} \tag{5}
\end{equation*}
$$

- Error minimization: $R_{h} u$ minimizes $\min _{v_{h} \in V_{h}} a\left(u-v_{h}, u-v_{h}\right)$
- the energy of the error $=$ error of energy:

$$
\begin{equation*}
a\left(u-R_{h} u, u-R_{h} u\right)=a(u, u)-a\left(R_{h} u, R_{h} u\right) \tag{6}
\end{equation*}
$$

no proofs

Properties for the modified problem

- equivalent minimization works for a_{γ} as well
- modified orthogonality:

$$
\begin{equation*}
a\left(u-R_{h, \gamma} u, v_{h}\right)+K_{\gamma}\left(R_{h, \gamma} u_{h}, v_{h}\right)=0 \forall v_{h} \in V_{h} \tag{7}
\end{equation*}
$$

- modified Error minimization: $R_{h, \gamma} u$ minimizes $\min _{v_{h} \in V_{h}} a\left(u-v_{h}, u-v_{h}\right)-K_{\gamma}\left(v_{h}, v_{h}\right)$
- the energy of the error = error of energy (modified):

$$
\begin{equation*}
a\left(u-R_{h, \gamma} u, u-R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)=a(u, u)-a_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right) \tag{8}
\end{equation*}
$$

proofs

modified orthogonality

We have:

$$
\begin{aligned}
a\left(u, v_{h}\right) & =\left\langle f, v_{h}\right\rangle \forall v_{h} \in V_{h} \\
a\left(R_{h, \gamma} u, v_{h}\right)-K_{\gamma}\left(R_{h, \gamma} u, v_{h}\right) & =\left\langle f, v_{h}\right\rangle \forall v_{h} \in V_{h}
\end{aligned}
$$

taking the difference yields the claimed result:

$$
a\left(u-R_{h, \gamma} u, v_{h}\right)+K_{\gamma}\left(R_{h, \gamma} u, v_{h}\right)=0 \forall v_{h} \in V_{h}
$$

proofs

modified error minimum

$$
\begin{aligned}
& a\left(u-R_{h, \gamma} u-v_{h}, u-R_{h, \gamma} u-v_{h}\right)-K_{\gamma}\left(R_{h, \gamma} u+v_{h}, R_{h, \gamma} u+v_{h}\right) \\
= & a\left(u-R_{h, \gamma} u, u-R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right) \\
- & \underbrace{\left(a\left(u-R_{h, \gamma} u, v_{h}\right)+K_{\gamma}\left(R_{h, \gamma} u, v_{h}\right)\right)}_{=0} \underbrace{-a\left(v_{h}, R_{h, \gamma} u\right)-K_{\gamma}\left(v_{h}, R_{h, \gamma} u\right)}_{=0} \\
+ & \underbrace{a\left(v_{h}, v_{h}\right)-K_{\gamma}\left(v_{h}, v_{h}\right)}_{=0}
\end{aligned}
$$

By ensuring that the modified bilinear form a_{γ} is positive definite we have the requested result.

proofs

Energy of error = error of energy

$$
\begin{aligned}
& a\left(u-R_{h, \gamma} u, u-R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right) \\
= & a\left(u, u-R_{h, \gamma} u\right) \underbrace{-a\left(R_{h, \gamma} u, u-R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)}_{=0} \\
= & a(u, u)-a\left(u, R_{h, \gamma} u\right)=a(u, u)-a\left(R_{h, \gamma} u, R_{h, \gamma} u\right) \\
- & a\left(u-R_{h, \gamma} u, R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)+K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right) \\
= & a(u, u) \underbrace{-a\left(R_{h, \gamma} u, R_{h, \gamma} u\right)-K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)}_{=-a_{\gamma}} \\
- & \underbrace{a\left(u-R_{h, \gamma} u, R_{h, \gamma} u\right)+K_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)}_{=0} \\
= & a(u, u)-a_{\gamma}\left(R_{h, \gamma} u, R_{h, \gamma} u\right)
\end{aligned}
$$

Table of Contents

(1) Modifying the bilinear form

(2) regularized δ-function
(3) point error estimates

Regularized δ-functions

It is common knowledge, that there is no function (in L^{2}) such that:

$$
\begin{equation*}
\int_{\Omega} f(x) \delta(x) d x=f(0) \forall f \in L^{2}(\Omega) \tag{9}
\end{equation*}
$$

However it is possible that a function fulfills this in a finite dimensional subspace like for example linear polynomials.

$$
\begin{equation*}
\int_{\Omega} p(x) \delta(x) d x=f(0) \forall p \in \mathbb{P}^{1}(\Omega) \tag{10}
\end{equation*}
$$

Construction of δ_{x}

- Let \hat{K} be any Element of some triangular mesh.
- Choose $\omega \geq 0 \in C^{\infty}\left(\mathbb{R}^{2}\right)$ with $\operatorname{supp}(\omega) \subseteq \hat{K}$
- without loss of generality we may assume $\int_{\hat{K}} \omega d x=1$
- Now choose a basis $\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}\right\}$ of $\mathbb{P}^{1}=\operatorname{span}\{1, x, y\}$ which is orthonormal with respect to the scalar product $(f, g)=\int_{\hat{K}} f(x) g(x) \omega(x) d x$
- We have: $\delta_{x}(y)=\sum_{i=0}^{2} \varphi_{i}(x) \varphi_{i}(y) \omega(y)$

proof

Let $v \in \mathbb{P}^{1}$ be $v(x)=\sum_{i=0}^{2} a_{i} \varphi_{i}(x)$

$$
\begin{aligned}
\int_{\hat{K}} v(y) \delta_{x}(y) d y & =\sum_{i=0}^{2} \varphi_{i}(x) \sum_{j=0}^{2} a_{j} \overbrace{\int_{\hat{K}} \varphi_{i}(y) \varphi_{j}(y) \omega(y) d y} \\
& =\sum^{2} a_{i} \varphi_{i}(x)=v(x)
\end{aligned}
$$

Table of Contents

(1) Modifying the bilinear form

(2) regularized δ-function

3 point error estimates

Point-Error-estimates

We want to obtain an error estimate of the form $\left|u(x)-R_{h, \gamma} u(x)\right| \leq ? ? ?$, however this is not in P^{1} so we can't use δ_{x} directly. For any point x let $K_{x} \in T_{h}$ be the triangle containing x (for x sufficiently far from the singularity).

$$
\begin{aligned}
u(x) & -R_{h, \gamma} u(x)-\int_{K_{x}}\left(u(y)-R_{h, \gamma} u(y)\right) \delta_{x}(y) d y=\int_{K_{x}}(u(x)-u(y)) \delta_{x}(y) d y \\
& =\int_{K_{x}}\left(u^{\prime}(x)(y-x)+\frac{1}{2}(y-x) u^{\prime \prime}(\xi(x, y))(y-x)\right) \delta_{x}(y) d y \\
& =u^{\prime}(x) \underbrace{\int_{K_{x}}(y-x) \delta_{x}(y) d y}_{=0} \\
& +\frac{1}{2} \underbrace{\int_{K_{x}} \delta_{x}(y)}_{=O(1)} \underbrace{(y-x)}_{O(h)} \underbrace{u^{\prime \prime}(\xi(x, y))}_{=O(1)} \underbrace{(y-x)}_{=O(h)} d y=O\left(h^{2}\right)
\end{aligned}
$$

reformulate by bilinear form

Now consider the dual problem, with right hand side δ_{x}

Find g_{x} such that:

$$
\begin{aligned}
a\left(v, g_{x}\right) & =\left\langle\delta_{x}, v\right\rangle \forall v \in V \\
g_{x} & =0 \text { on } \partial \Omega
\end{aligned}
$$

This problem has a unique solution by Lax-Milgram because δ_{x} is in L^{2} and $a(\cdot, \cdot)$ should fulfill appropriate conditions from the original problem. g_{x} is called regularized greens function.

By choosing the primary problems error as a test function we get:

$$
\begin{equation*}
a\left(u-R_{h, \gamma} u, g_{x}\right)=\left\langle\delta_{x}, u-R_{h, \gamma} u\right\rangle=u(x)-R_{h, \gamma} u(x)+O\left(h^{2}\right) \tag{11}
\end{equation*}
$$

That means, that with the regularized greens-function the point error is representable by the bilinear form.

Thank you for your attention!

