Boundaries and Traces

Johannes Höller

October 22, 2013

Content

(1) Boundary Properties
(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Table of Contents

(1) Boundary Properties

(2) Prerequisites

(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Definition 1

Let $\Omega \subseteq \mathbb{R}^{n}$ open. The boundary Γ of Ω is called continuous respectively Lipschitz if for every $x \in \Gamma$ there exists a neighborhood V of x in \mathbb{R}^{n} and a new set of orthogonal coordinates such that:

- V is a hypercube in the new coordinates:

$$
V=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid-a_{i}<y_{i}<a_{i}, 1 \leq i \leq n\right\}
$$

- There is a continuous resp. Lipschitz function ϕ defined on $V^{\prime}=\left\{\left(y_{1}, \ldots, y_{n-1}\right) \mid-a_{i}<y_{i}<a_{i}, 1 \leq i \leq n-1\right\}$ and :
- $\left|\phi\left(y^{\prime}\right)\right| \leq a_{n} / 2$ for every $y^{\prime} \in V^{\prime}$
- $\Omega \cap V=\left\{y \in V \mid y_{n} \leq \phi\left(y^{\prime}\right)\right\}$
- $\Gamma \cap V=\left\{y \in V \mid y_{n}=\phi\left(y^{\prime}\right)\right\}$

Definition 2

Let $\Omega \subseteq \mathbb{R}^{n}$ open. $\bar{\Omega}$ is called a continuous resp. Lipschitz submanifold with boundary in \mathbb{R}^{n-1}, if for every $x \in \Gamma$ there is a neighborhood V of x in \mathbb{R}^{n} and a mapping ψ from V to \mathbb{R}^{n} such that:

- ψ is injective
- ψ and ψ^{-1} (defined on $\left.\psi(V)\right)$ are continuous resp. Lipschitz
- $\Omega \cap V=\left\{y \in V \mid \psi_{n}(y)<0\right\}$

Equivalent Definitions?

- Having two definitions commonly used one has to ask the question, what their differences are or whether they are maybe equivalent
- Consider: $\psi(y)=\left\{y_{1}, \ldots, y_{n-1}, y_{n}-\phi\left(y^{\prime}\right)\right\}$
- Therefore Definiton $1 \Longrightarrow$ Definition 2
- If everything is at least continuously differentiable one can use the implicit function theorem to get $\phi(\psi)$ Then Definition $2 \Longrightarrow$ Definition 1 .
- For only Lipschitz boundaries the latter does not hold

Counterexample

- Ω has infinitely many oscillations towards the origin
- It has a boundary with Lipschitz property according to Definition 2 by construction (not proved here)
- But it has no Lipschitz boundary according to Definition 1
- Any line segment starting at the origin will cut Γ infinitely often or never

Table of Contents

(1) Boundary Properties
(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Sobolev Spaces

Definition $H^{m}(\Omega)$

For any integer $m \geq 0$ and $\Omega \subseteq \mathbb{R}^{n}$, we define $H^{m}(\Omega)$ as the space of all distributions u from Ω to \mathbb{R}^{n} such that $D^{\alpha} u \in L_{2}$ for $|\alpha| \leq m$.

Norm $\|.\|_{m, \Omega}$

$$
\begin{equation*}
\|u\|_{m, \Omega}^{2}=\sum_{|\alpha| \leq m} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{2} d x \tag{1}
\end{equation*}
$$

Example: H^{1}

$$
\begin{equation*}
\|u\|_{1, \mathbb{R}^{2}}^{2}=\|u\|_{2}^{2}+\left\|\frac{\partial u}{\partial x}\right\|_{2}^{2}+\left\|\frac{\partial u}{\partial y}\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

and for non-integers

Definition $H^{s}(\Omega)$

For non-integer $s>0$ we define $H^{s}(\Omega)$ as the space of all distributions u from Ω to \mathbb{R}^{n} such that:

- $s=m+\sigma, m$ integer, $\sigma \in(0,1)$
- $u \in H^{m}(\Omega)$
- $\int_{\Omega \times \Omega} \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|^{2}}{|x-y|^{n+2 \sigma}} d x d y<+\infty$ for $|\alpha|=m$

Norm $\|\cdot\|_{s, \Omega}$

$$
\|u\|_{s, \Omega}^{2}=\|u\|_{m, \Omega}^{2}+\sum_{|\alpha|=m} \int_{\Omega \times \Omega} \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|^{2}}{|x-y|^{n+2 \sigma}} d x d y
$$

Basic Theorems

Sobolev's Theorem

For $k<s-n / 2$ one has:

$$
H^{s}\left(\mathbb{R}^{n}\right) \subset C^{k}\left(\mathbb{R}^{n}\right)
$$

Trace Theorem for Hyperplane

Define: $\gamma u\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=u\left(x_{1}, \ldots, x_{n-1}, 0\right)$.
The mapping $u \rightarrow\left(\gamma u, \gamma D_{n} u, \ldots, \gamma D_{n}^{k} u\right)$ defined for smooth u has for $k<s-1 / 2$ a unique continuous extension as an operator from $H^{s}\left(\mathbb{R}^{n}\right)$ onto $\prod_{p=0}^{k} H^{s-p-1 / 2}\left(\mathbb{R}^{n-1}\right)$.

Table of Contents

(1) Boundary Properties
(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Trace Theorem for quadrant

Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$. The mapping:

$$
\begin{aligned}
u & \rightarrow\left\{f_{0}, f_{1}, g_{0}, g_{1}\right\} \\
f_{0} & =\left.u\right|_{y=0}, f_{1}=\left.\frac{\partial u}{\partial y}\right|_{y=0} \\
g_{0} & =\left.u\right|_{x=0}, g_{1}=\left.\frac{\partial u}{\partial x}\right|_{x=0}
\end{aligned}
$$

defined for smooth u has a unique continuous extension from $H^{2}(\Omega)$ onto the subspace of

$$
T=H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right) \times H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)
$$

defined by:

$$
\begin{aligned}
a & f_{0}(0)=g_{0}(0) \\
b_{1} & \int_{0}^{+\infty}\left|\frac{\partial f_{0}}{\partial x}(t)-g_{1}(t)\right|^{2} / t d t<+\infty \\
b_{2} & \int_{0}^{+\infty}\left|f_{1}(t)-\frac{\partial g_{0}}{\partial y}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Table of Contents

(1) Boundary Properties

(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Special Case

At first consider the subspace E of $H^{2}(\Omega)$ with $g_{0}=g_{1}=0$. Then $u \in E$ is equivalent to $\tilde{u} \in H^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$, where \tilde{u} is the continuation of u by zero for $x<0$.

Special case

The mapping $u \rightarrow\left\{f_{0}, f_{1}\right\}$ has a unique continuous extension from E onto the subspace of $H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)$defined by:

$$
\begin{aligned}
a & f_{0}(0)=0 \\
b_{1} & \int_{0}^{+\infty}\left|\frac{\partial f_{0}}{\partial x}(t)\right|^{2} / t d t<+\infty \\
b_{2} & \int_{0}^{+\infty}\left|f_{1}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Proof of necessity

- Trace Theorem on hyperplanes for \tilde{u} : $\tilde{f}_{0} \in H^{3 / 2}(\mathbb{R}), \tilde{f}_{1} \in H^{1 / 2}(\mathbb{R})$.
- Thus $f_{0} \in H^{3 / 2}\left(\mathbb{R}_{+}\right), f_{1} \in H^{1 / 2}\left(\mathbb{R}_{+}\right)$and $f_{0}(0)=0$ (a) since \tilde{f}_{0} is continuous by Sobolev's Theorem.
- For b_{1}, b_{2} consider that \tilde{f}_{1} and $\frac{\partial \tilde{f}_{0}}{\partial x}$ are $\in H^{1 / 2}(\mathbb{R})$.
- Thus

$$
\int_{\mathbb{R}^{2}}\left|\tilde{f}_{1}(t)-\tilde{f}_{1}(s)\right|^{2} /|t-s|^{2} d t d s<+\infty
$$

by the $H^{1 / 2}$ norm.

- Restrict integration to $t>0, s<0$:

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{-\infty}^{0}\left|f_{1}(t)\right|^{2} /|t-s|^{2} d t d s \\
= & \int_{0}^{+\infty}\left(\int_{-\infty}^{0}|t-s|^{-2} d s\right)\left|f_{1}(t)\right|^{2} d t \\
= & \int_{0}^{+\infty}\left|f_{1}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Proof of surjectivity

Start with $f_{0} \in H^{3 / 2}\left(\mathbb{R}_{+}\right), f_{1} \in H^{1 / 2}\left(\mathbb{R}_{+}\right)$fulfilling $\left(a, b_{1}, b_{2}\right)$

$$
\begin{array}{rll}
\tilde{f}_{1} \in H^{1 / 2}(\mathbb{R}) \text { since: } & & \\
=\int_{\mathbb{R}^{2}}\left|\tilde{f}_{1}(t)-\tilde{f}_{1}(s)\right|^{2} /|t-s|^{2} d t d s & <+\infty & \\
=\int_{\mathbb{R}_{+}^{2}}\left|f_{1}(t)-f_{1}(s)\right|^{2} /|t-s|^{2} d t d s & <+\infty & \text { by } H^{1 / 2}\left(\mathbb{R}_{+}\right) \\
+2 \int_{0}^{+\infty} \int_{-\infty}^{0}\left|f_{1}(t)\right|^{2} /|t-s|^{2} d t d s & <+\infty & \text { by } b_{1}, b_{2} \\
+ & \int_{\mathbb{R}_{-}^{2}} 0 d t d s & =0
\end{array}
$$

The same for $\frac{\partial \tilde{f}_{0}}{\partial x}$ yields $\tilde{f}_{0} \in H^{3 / 2}(\mathbb{R})$.

- By surjectivity in trace theorem for hyperplanes one has:
- $\exists w \in H^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$with $\left.w\right|_{y=0}=\tilde{f}_{0}$ and $\left.\frac{\partial w}{\partial y}\right|_{y=0}=\tilde{f}_{1}$
- To complete the proof we need $\left.w\right|_{x=0}=0$.

Construction by mirror images

Define:

$$
w^{\prime}(x, y)=w(x, y)-c_{1} w(-x, y)-c_{2} w(-2 x, y)
$$

Now consider:

$$
\begin{aligned}
w^{\prime}(0, y) & =w(0, y)-c_{1} w(0, y)-c_{2} w(0, y) \\
\frac{\partial w^{\prime}}{\partial x}(0, y) & =\frac{\partial w}{\partial x}(0, y)+c_{1} \frac{\partial w}{\partial x}(0, y)+2 c_{2} \frac{\partial w^{\prime}}{\partial x}(0, y)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
w^{\prime}(0, y) & =0 & \text { iff } & c_{1}+c_{2} & =1 \\
\frac{\partial w^{\prime}}{\partial x}(0, y) & =0 & & c_{1}+2 c_{2} & =-1
\end{aligned}
$$

w^{\prime} has the same traces! For $x>0$:

$$
\left.w^{\prime}\right|_{y=0}(x)=\tilde{f}_{0}(x)-c_{1} \tilde{f}_{0}(-x)-c_{2} \tilde{f}_{0}(-2 x)=\tilde{f}_{0}(x)
$$

Proof of special case completed

At first consider the subspace E of $H^{2}(\Omega)$ with $g_{0}=g_{1}=0$. Then $u \in E$ is equivalent to $\tilde{u} \in H^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$, where \tilde{u} is the continuation of u by zero for $x<0$.

Special case

The mapping $u \rightarrow\left\{f_{0}, f_{1}\right\}$ has a unique continuous extension from E onto the subspace of $H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)$defined by:

$$
\begin{aligned}
& a f_{0}(0)=0 \\
& b_{1} \int_{0}^{+\infty}\left|\frac{\partial f_{0}}{\partial x}(t)\right|^{2} / t d t<+\infty \\
& b_{2} \int_{0}^{+\infty}\left|f_{1}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Table of Contents

(1) Boundary Properties
(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Lemma

For $u \in H^{m}(\Omega) f_{0}$ and g_{0} fulfill:

$$
\begin{aligned}
& \text { a } f_{0}(0)=g_{0}(0) \text { if } m>1 \\
& b \quad \int_{0}^{+\infty}\left|f_{0}(t)-g_{0}(t)\right|^{2} / t d t<+\infty \text { if } m=1
\end{aligned}
$$

Lemma

For $u \in H^{m}(\Omega) f_{0}$ and g_{0} fulfill:

$$
\begin{aligned}
& \text { a } f_{0}(0)=g_{0}(0) \text { if } m>1 \\
& b \int_{0}^{+\infty}\left|f_{0}(t)-g_{0}(t)\right|^{2} / t d t<+\infty \text { if } \mathrm{m}=1
\end{aligned}
$$

Proof: Condition a is obvious because u is continuous by Sobolev's Theorem then. Condition b holds because there is a constant C such that:

$$
\int_{0}^{+\infty}\left|f_{0}(t)-g_{0}(t)\right|^{2} / t d t \leq C\|u\|_{1, \Omega}^{2}
$$

For smooth u write:

$$
\begin{aligned}
f_{0}(t)-g_{0}(t) & =u(t, 0)-u(t, t)+u(t, t)-u(0, t) \\
& =\int_{0}^{t} \frac{\partial u}{\partial x}(s, t)-\frac{\partial u}{\partial y}(t, s) d s
\end{aligned}
$$

Proof continues

Applying Cauchy-Schwarz equation

$$
\begin{aligned}
& a(s, t)=\frac{\partial u}{\partial x}(s, t)-\frac{\partial u}{\partial y}(t, s) \\
& \left(\int_{0}^{t} a(s, t) \cdot 1 d s\right)^{2} \leq \int_{0}^{t} a(s, t)^{2} d s \int_{0}^{t} 1^{2} d s \\
& \int_{0}^{+\infty} \frac{1}{t}\left(\int_{0}^{t} a(s, t) \cdot 1 d s\right)^{2} d t \leq \int_{0}^{+\infty} \int_{0}^{t} a(s, t)^{2} d s d t
\end{aligned}
$$

Proof continues

Applying Cauchy-Schwarz equation

$$
\begin{aligned}
& a(s, t)=\frac{\partial u}{\partial x}(s, t)-\frac{\partial u}{\partial y}(t, s) \\
& \left(\int_{0}^{t} a(s, t) \cdot 1 d s\right)^{2} \leq \int_{0}^{t} a(s, t)^{2} d s \int_{0}^{t} 1^{2} d s \\
& \int_{0}^{+\infty} \frac{1}{t}\left(\int_{0}^{t} a(s, t) \cdot 1 d s\right)^{2} d t \leq \int_{0}^{+\infty} \int_{0}^{t} a(s, t)^{2} d s d t
\end{aligned}
$$

and some geometry

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} \leq 2 a^{2}+2 b^{2} \\
0 \leq(a-b)^{2} & =a^{2}-2 a b+b^{2} \Longrightarrow 2 a b \leq a^{2}+b^{2}
\end{aligned}
$$

Proof complete

put together

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{0}^{t}\left(\frac{\partial u}{\partial x}(s, t)-\frac{\partial u}{\partial y}(t, s)\right)^{2} d s d t \\
\leq & 2 \int_{0}^{+\infty} \int_{0}^{t}\left|\frac{\partial u}{\partial x}(s, t)\right|^{2}+\left|\frac{\partial u}{\partial y}(t, s)\right|^{2} d s d t \\
\leq & 2\|u\|_{1, \Omega}^{2}
\end{aligned}
$$

Due to density the estimate remains valid for all $u \in H^{1}(\Omega)$ which completes the proof of condition b).

Table of Contents

(1) Boundary Properties

(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Continuation

For now let Ω be the half-plane $x>0$. Then any $u \in H^{2}(\Omega)$ can be extended into a function in $H^{2}\left(\mathbb{R}^{2}\right)$.

Proof by mirror images

For $x<0$ define: $P_{m} u(x, y)=c_{1} u(-x, y)+c_{2} u(-2 x, y)$

$$
\begin{aligned}
P_{m} u\left(0^{-}, y\right) & =c_{1} u\left(0^{+}, y\right)+c_{2} u\left(0^{+}, y\right) \\
\left.\frac{\partial P_{m} u}{\partial x}\right|_{x=0^{-}} & =-\left.c_{1} \frac{\partial u}{\partial x}\right|_{x=0^{+}}-\left.2 c_{2} \frac{\partial u}{\partial x}\right|_{x=0^{+}}
\end{aligned}
$$

Thus $P_{m} u \in H^{2}\left(\mathbb{R}^{2}\right)$ iff $c_{1}+c_{2}=1$ and $-c_{1}-2 c_{2}=1$. This works for non-smooth u as well by density, as one easily shows: $\left\|P_{m} u\right\|_{2, \mathbb{R}^{2}} \leq C\|u\|_{2, \Omega}$

Continuation from a quarter of space to a half-space work as well, and the same procedure works in \mathbb{R}^{1}.

Table of Contents

(1) Boundary Properties

(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Trace Theorem for quadrant

Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$. The mapping:

$$
\begin{aligned}
u & \rightarrow\left\{f_{0}, f_{1}, g_{0}, g_{1}\right\} \\
f_{0} & =\left.u\right|_{y=0}, f_{1}=\left.\frac{\partial u}{\partial y}\right|_{y=0} \\
g_{0} & =\left.u\right|_{x=0}, g_{1}=\left.\frac{\partial u}{\partial x}\right|_{x=0}
\end{aligned}
$$

defined for smooth u has a unique continuous extension from $H^{2}(\Omega)$ onto the subspace of

$$
T=H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right) \times H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)
$$

defined by:

$$
\begin{aligned}
a & f_{0}(0)=g_{0}(0) \\
b_{1} & \int_{0}^{+\infty}\left|\frac{\partial f_{0}}{\partial x}(t)-g_{1}(t)\right|^{2} / t d t<+\infty \\
b_{2} & \int_{0}^{+\infty}\left|f_{1}(t)-\frac{\partial g_{0}}{\partial y}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Proof necessity

- By the continuation property we can extend $u \in H^{2}(\Omega)$ into $U \in H^{2}\left(\mathbb{R}^{2}\right)$.
- For U the trace theorem on hyperplanes can be applied:

$$
\left\{f_{0}, f_{1}, g_{0}, g_{1}\right\} \in T=H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right) \times H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)
$$

- Now applying the Lemma to to $u, \frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ proves the necessity of the conditions a, b_{1}, b_{2}.

Proof sufficiency 1

- Start from functions $\left\{f_{0}, f_{1}, g_{0}, g_{1}\right\} \in T$ fulfilling the conditions:
- Use continuation on $\left\{g_{0}, g_{1}\right\}$ to $\left\{G_{0}, G_{1}\right\} \in H^{3 / 2}(\mathbb{R}) \times H^{1 / 2}(\mathbb{R})$
- By surjectivity of the trace theorem on hyperplanes there is a $V \in H^{2}\left(\mathbb{R}^{2}\right)$ with $\left.\frac{\partial^{k} V}{\partial x^{k}}\right|_{x=0}=G_{k}, k=0,1$
- Now search for w such that $\left.\frac{\partial^{k} w}{\partial y^{k}}\right|_{y=0}=f_{k}-\left.\frac{\partial^{k} V}{\partial y^{k}}\right|_{y=0}$ and $\left.\frac{\partial^{k} w}{\partial x^{k}}\right|_{x=0}=0$ taking use of the special case.
- Then $u=\left.V\right|_{\Omega}+w$ will have the required traces.

Proof sufficiency 2

- Define: $\phi_{0}=\left.V\right|_{y=0}, \phi_{1}=\left.\frac{\partial V}{\partial y}\right|_{y=0}$
- By the necessity part of the Theorem we have:

$$
\begin{aligned}
& a * \phi_{0}(0)=g_{0}(0) \\
& b_{1} * \int_{0}^{+\infty}\left|\frac{\partial \phi_{0}}{\partial x}(t)-g_{1}(t)\right|^{2} / t d t<+\infty \\
& b_{2} * \int_{0}^{+\infty}\left|\phi_{1}(t)-\frac{\partial g_{0}}{\partial y}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

- Then for $\psi_{k}=f_{k}-\phi_{k}$ one has:

$$
\begin{array}{rl}
a & * * \psi_{0}(0)=0 \\
b_{1} & * * \int_{0}^{+\infty}\left|\psi_{1}(t)\right|^{2} / t d t<+\infty \\
b_{2} * * \int_{0}^{+\infty}\left|\frac{\partial \psi_{0}}{\partial x}\right|^{2} / t d t<+\infty
\end{array}
$$

- Conditions $* *$ follow from $a, b_{1,2}$ and $a *, b_{1,2} *$ with triangle inequality
- These are the assumptions of the special case, so the existence of w is proven.

Trace Theorem for quadrant

Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0\right\}$. The mapping:

$$
\begin{aligned}
u & \rightarrow\left\{f_{0}, f_{1}, g_{0}, g_{1}\right\} \\
f_{0} & =\left.u\right|_{y=0}, f_{1}=\left.\frac{\partial u}{\partial y}\right|_{y=0} \\
g_{0} & =\left.u\right|_{x=0}, g_{1}=\left.\frac{\partial u}{\partial x}\right|_{x=0}
\end{aligned}
$$

defined for smooth u has a unique continuous extension from $H^{2}(\Omega)$ onto the subspace of

$$
T=H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right) \times H^{3 / 2}\left(\mathbb{R}_{+}\right) \times H^{1 / 2}\left(\mathbb{R}_{+}\right)
$$

defined by:

$$
\begin{aligned}
a & f_{0}(0)=g_{0}(0) \\
b_{1} & \int_{0}^{+\infty}\left|\frac{\partial f_{0}}{\partial x}(t)-g_{1}(t)\right|^{2} / t d t<+\infty \\
b_{2} & \int_{0}^{+\infty}\left|f_{1}(t)-\frac{\partial g_{0}}{\partial y}(t)\right|^{2} / t d t<+\infty
\end{aligned}
$$

Table of Contents

(1) Boundary Properties

(2) Prerequisites
(3) Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Sector of arbitrary angle

- For a sector with angle $\omega \in(0, \pi)$ just apply a linear change of coordinates
- Then apply the Theorem, because $\|\cdot\|_{m, \Omega}$ remain unaffected
- The traces then become: $\left\{f_{i}=\gamma_{1} \frac{\partial^{i}}{\partial \tau_{2}^{i}} u\right\},\left\{g_{i}=\gamma_{2} \frac{\partial^{i}}{\partial \tau_{1}^{i}} u\right\}$
- One prefers having traces in terms of: $\left\{F_{i}=\gamma_{1} \frac{\partial^{i}}{\partial \nu_{1}^{i}} u\right\},\left\{G_{i}=\gamma_{2} \frac{\partial^{i}}{\partial \nu_{2}^{i}} u\right\}$
- $\tau_{1,2}$ and $\nu_{1,2}$ are tangential and normal vectors of the line segments
- we can have:

$$
\begin{aligned}
& \tau_{2}=\alpha \tau_{1}+\beta \nu_{1} \\
& \nu_{2}=\beta \tau_{1}-\alpha \nu_{1}
\end{aligned}
$$

then we have new conditions: (in H^{2})

$$
\begin{aligned}
& g_{1}(0) \equiv \frac{\partial f_{0}}{\partial t}(0) \\
& \frac{\partial g_{0}}{\partial t}(0) \equiv f_{1}(0)
\end{aligned} \rightarrow \begin{aligned}
G_{1}(0) & \equiv \beta \frac{\partial F_{0}}{\partial t}(0)-\alpha F_{1}(0) \\
\frac{\partial G_{0}}{\partial t}(0) & \equiv \alpha \frac{\partial F_{0}}{\partial t}(0)+\beta F_{1}(0)
\end{aligned}
$$

Non-convex Vertices

- Linear change of coordinats doesn't work for $\omega \geq \pi$
- For $\omega=\pi$ we have the trace theorem on hyperplanes
- with $\begin{aligned} & A \vec{u}=e_{1} \\ & A \vec{v}=e_{2}\end{aligned}$ we always have $A \frac{\vec{u}+\vec{v}}{2}=+\frac{e_{1}+e_{2}}{2}$
- Thus we need to consider the case Ω is a three-quarter-space
- The Theorem is valid for three-quarter-space as well, by the continuation property
\Longrightarrow then we have the Theorem for arbitrary angels

Continuation from three-quarter space

Remember

$$
P_{m} u=\left\{\begin{array}{cc}
u(x, y) & x>0 \\
c_{1} u(-x, y)+c_{2} u(-2 x, y) & x<0
\end{array}\right.
$$

first note

$u(x, y>0)=0 \Longrightarrow P_{m} u(x, y>0)=0$

then one has

- $V=P_{m}\left(\left.u\right|_{y>0}\right)$
- $w=\left.\left(u-\left.V\right|_{\Omega}\right)\right|_{x>0}$
- $w(x, y>0)=0 \Longrightarrow W=P_{m} w(x, y>0)=0$
- Now $U=V+W$ is the continuation
- for $y>0$: $W=0, U=V,\left.V\right|_{y>0}=u$
- for $y<0$ and $x>0: U=V+W=V+\left(u-\left.V\right|_{\Omega}\right)=u$

Connection to finite domains

The step from a single corner to a finite domain with multiple vertices is done by partition of unity

- This is a method used regulary in Sobolev Space to localise certain properties
- I only give a sketch of the idea here:
- In our case we have one function per corner $c_{i}(x, y)$ with values in $[0,1]$
- $\forall(x, y) \in \Omega: \sum_{i=1}^{N} c_{i}(x, y)=1$
- close to corner i the function $c_{i}=1$ all others are zero
- we have properties for every single plane sector G_{i} from Theorem
- One can "glue" it together

End

Thank you for your attention!

