◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Boundaries and Traces

Johannes Höller

October 22, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 Prerequisites

- **3** Trace Theorem for polygonal Domains
 - Proof of special case
 - Lemma
 - Continuation property
 - Proof of Theorem
 - Steps towards arbitrary Polygonal Domain

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Table of Contents

2 Prerequisites

- 3 Trace Theorem for polygonal Domains
 - Proof of special case
 - Lemma
 - Continuation property
 - Proof of Theorem
 - Steps towards arbitrary Polygonal Domain

Definition 1

Let $\Omega \subseteq \mathbb{R}^n$ open. The boundary Γ of Ω is called continuous respectively Lipschitz if for every $x \in \Gamma$ there exists a neighborhood V of x in \mathbb{R}^n and a new set of orthogonal coordinates such that:

• V is a hypercube in the new coordinates:

$$V = \{(y_1, ..., y_n) | -a_i < y_i < a_i, 1 \le i \le n\}$$

- There is a continuous resp. Lipschitz function ϕ defined on $V' = \{(y_1, ..., y_{n-1}) | -a_i < y_i < a_i, 1 \le i \le n-1\}$ and : • $|\phi(y')| \le a_n/2$ for every $y' \in V'$
 - $\Omega \cap V = \{y \in V | y_n \le \phi(y')\}$
 - $\Gamma \cap V = \{y \in V | y_n = \phi(y')\}$

Definition 2

Let $\Omega \subseteq \mathbb{R}^n$ open. $\overline{\Omega}$ is called a continuous resp. Lipschitz submanifold with boundary in \mathbb{R}^{n-1} , if for every $x \in \Gamma$ there is a neighborhood V of x in \mathbb{R}^n and a mapping ψ from V to \mathbb{R}^n such that:

- ψ is injective
- ψ and ψ^{-1} (defined on $\psi(V)$) are continuous resp. Lipschitz
- $\Omega \cap V = \{y \in V | \psi_n(y) < 0\}$

Equivalent Definitions?

- Having two definitions commonly used one has to ask the question, what their differences are or whether they are maybe equivalent
- Consider: $\psi(y) = \{y_1, ..., y_{n-1}, y_n \phi(y')\}$
- Therefore Definiton 1 \implies Definition 2
- If everything is at least continuously differentiable one can use the implicit function theorem to get $\phi(\psi)$ Then Definition 2 \implies Definition 1.
- For only Lipschitz boundaries the latter does not hold

Prerequisites

Counterexample

- Ω has infinitely many oscillations towards the origin
- It has a boundary with Lipschitz property according to Definition 2 by construction (not proved here)
- But it has no Lipschitz boundary according to Definition 1
- Any line segment starting at the origin will cut Γ infinitely often or never

590

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Table of Contents

Boundary Properties

2 Prerequisites

- 3 Trace Theorem for polygonal Domains
 - Proof of special case
 - Lemma
 - Continuation property
 - Proof of Theorem
 - Steps towards arbitrary Polygonal Domain

Sobolev Spaces

Definition $H^m(\Omega)$

For any integer $m \ge 0$ and $\Omega \subseteq \mathbb{R}^n$, we define $H^m(\Omega)$ as the space of all distributions u from Ω to \mathbb{R}^n such that $D^{\alpha}u \in L_2$ for $|\alpha| \le m$.

Norm $||.||_{m,\Omega}$

$$||u||_{m,\Omega}^2 = \sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}u(x)|^2 dx \tag{1}$$

Example: H^1

$$||u||_{1,\mathbb{R}^2}^2 = ||u||_2^2 + \left|\left|\frac{\partial u}{\partial x}\right|\right|_2^2 + \left|\left|\frac{\partial u}{\partial y}\right|\right|_2^2$$
(2)

・ロト・雪 ・ 山 ・ 山 ・ 小田 ・ 小田 ・

and for non-integers

Definition $H^{s}(\Omega)$

For non-integer s > 0 we define $H^{s}(\Omega)$ as the space of all distributions u from Ω to \mathbb{R}^{n} such that:

•
$$s = m + \sigma$$
, m integer, $\sigma \in (0, 1)$

•
$$u \in H^m(\Omega)$$

• $\int_{\Omega \times \Omega} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|^2}{|x - y|^{n+2\sigma}} dx dy < +\infty$ for $|\alpha| = m$

Norm $||.||_{s,\Omega}$

$$||u||_{s,\Omega}^2 = ||u||_{m,\Omega}^2 + \sum_{|\alpha|=m} \int_{\Omega \times \Omega} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|^2}{|x - y|^{n + 2\sigma}} dx dy$$

Basic Theorems

Sobolev's Theorem

For k < s - n/2 one has:

$$H^{s}(\mathbb{R}^{n}) \subset C^{k}(\mathbb{R}^{n}).$$

Trace Theorem for Hyperplane

Define: $\gamma u(x_1, ..., x_{n-1}, x_n) = u(x_1, ..., x_{n-1}, 0)$. The mapping $u \to (\gamma u, \gamma D_n u, ..., \gamma D_n^k u)$ defined for smooth u has for k < s - 1/2 a unique continuous extension as an operator from $H^s(\mathbb{R}^n)$ onto $\prod_{p=0}^k H^{s-p-1/2}(\mathbb{R}^{n-1})$.

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Trace Theorem for quadrant

Let $\Omega = \{(x, y) \in \mathbb{R}^2 | x > 0, y > 0\}$. The mapping:

$$u \rightarrow \{f_0, f_1, g_0, g_1\}$$

$$f_0 = u|_{y=0}, f_1 = \frac{\partial u}{\partial y}|_{y=0}$$

$$g_0 = u|_{x=0}, g_1 = \frac{\partial u}{\partial x}|_{x=0}$$

defined for smooth u has a unique continuous extension from $H^2(\Omega)$ onto the subspace of

$$\mathcal{T} = \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+) imes \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+)$$

defined by:

$$\begin{array}{l} a \ f_0(0) = g_0(0) \\ b_1 \ \int_0^{+\infty} |\frac{\partial f_0}{\partial x}(t) - g_1(t)|^2 / t dt < +\infty \\ b_2 \ \int_0^{+\infty} |f_1(t) - \frac{\partial g_0}{\partial y}(t)|^2 / t dt < +\infty \end{array}$$

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Special Case

At first consider the subspace E of $H^2(\Omega)$ with $g_0 = g_1 = 0$. Then $u \in E$ is equivalent to $\tilde{u} \in H^2(\mathbb{R} \times \mathbb{R}_+)$, where \tilde{u} is the continuation of u by zero for x < 0.

Special case

The mapping $u \to \{f_0, f_1\}$ has a unique continuous extension from *E* onto the subspace of $H^{3/2}(\mathbb{R}_+) \times H^{1/2}(\mathbb{R}_+)$ defined by:

$$a f_0(0) = 0$$

$$b_1 \int_0^{+\infty} |\frac{\partial f_0}{\partial x}(t)|^2 / t dt < +\infty$$

$$b_2 \int_0^{+\infty} |f_1(t)|^2 / t dt < +\infty$$

Prerequisites

Proof of necessity

- Trace Theorem on hyperplanes for \tilde{u} : $\tilde{f}_0 \in H^{3/2}(\mathbb{R}), \tilde{f}_1 \in H^{1/2}(\mathbb{R}).$
- Thus $f_0 \in H^{3/2}(\mathbb{R}_+)$, $f_1 \in H^{1/2}(\mathbb{R}_+)$ and $f_0(0) = 0$ (a) since \tilde{f}_0 is continuous by Sobolev's Theorem.
- For b_1, b_2 consider that \tilde{f}_1 and $\frac{\partial \tilde{f}_0}{\partial x}$ are $\in H^{1/2}(\mathbb{R})$.

Thus

$$\int_{\mathbb{R}^2} | ilde{f}_1(t) - ilde{f}_1(s)|^2/|t-s|^2 dt ds < +\infty$$

by the $H^{1/2}$ norm.

• Restrict integration to t > 0, s < 0:

$$\int_{0}^{+\infty} \int_{-\infty}^{0} |f_{1}(t)|^{2} / |t - s|^{2} dt ds$$

$$= \int_{0}^{+\infty} \left(\int_{-\infty}^{0} |t - s|^{-2} ds \right) |f_{1}(t)|^{2} dt$$

$$= \int_{0}^{+\infty} |f_{1}(t)|^{2} / t dt < +\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of surjectivity

Start with
$$f_0 \in H^{3/2}(\mathbb{R}_+)$$
, $f_1 \in H^{1/2}(\mathbb{R}_+)$ fulfilling (a, b_1, b_2)
 $\tilde{f}_1 \in H^{1/2}(\mathbb{R})$ since:

$$\int_{\mathbb{R}^2} |\tilde{f}_1(t) - \tilde{f}_1(s)|^2 / |t - s|^2 dt ds \quad \stackrel{?}{<} +\infty$$

$$= \int_{\mathbb{R}^2_+} |f_1(t) - f_1(s)|^2 / |t - s|^2 dt ds \quad <+\infty \quad \text{by } H^{1/2}(\mathbb{R}_+)$$

$$+ 2 \int_0^{+\infty} \int_{-\infty}^0 |f_1(t)|^2 / |t - s|^2 dt ds \quad <+\infty \quad \text{by } b_1, b_2$$

$$+ \int_{\mathbb{R}^2_-} 0 dt ds \qquad =0$$
The same for $\frac{\partial \tilde{f}_0}{\partial_x}$ yields $\tilde{f}_0 \in H^{3/2}(\mathbb{R})$.

- By surjectivity in trace theorem for hyperplanes one has:
- $\exists w \in H^2(\mathbb{R} imes \mathbb{R}_+)$ with $w|_{y=0} = \tilde{f}_0$ and $rac{\partial w}{\partial y}|_{y=0} = \tilde{f}_1$
- To complete the proof we need $w|_{x=0} = 0$.

Construction by mirror images

Define:

$$w'(x,y) = w(x,y) - c_1w(-x,y) - c_2w(-2x,y)$$

Now consider:

$$w'(0,y) = w(0,y) - c_1 w(0,y) - c_2 w(0,y)$$

$$\frac{\partial w'}{\partial x}(0,y) = \frac{\partial w}{\partial x}(0,y) + c_1 \frac{\partial w}{\partial x}(0,y) + 2c_2 \frac{\partial w'}{\partial x}(0,y)$$

Thus:

$$\begin{split} w'(0,y) &= 0 & \text{iff} & c_1 + c_2 &= 1 \\ \frac{\partial w'}{\partial x}(0,y) &= 0 & c_1 + 2c_2 &= -1 \\ w' \text{ has the same traces! For } x > 0 \end{split}$$

$$w'|_{y=0}(x) = \tilde{f}_0(x) - c_1 \tilde{f}_0(-x) - c_2 \tilde{f}_0(-2x) = \tilde{f}_0(x)$$

Proof of special case completed

At first consider the subspace E of $H^2(\Omega)$ with $g_0 = g_1 = 0$. Then $u \in E$ is equivalent to $\tilde{u} \in H^2(\mathbb{R} \times \mathbb{R}_+)$, where \tilde{u} is the continuation of u by zero for x < 0.

Special case

The mapping $u \to \{f_0, f_1\}$ has a unique continuous extension from *E* onto the subspace of $H^{3/2}(\mathbb{R}_+) \times H^{1/2}(\mathbb{R}_+)$ defined by:

$$a f_0(0) = 0$$

$$b_1 \int_0^{+\infty} |\frac{\partial f_0}{\partial x}(t)|^2 / t dt < +\infty$$

$$b_2 \int_0^{+\infty} |f_1(t)|^2 / t dt < +\infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

• Proof of special case

Lemma

- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Lemma

For $u \in H^m(\Omega)$ f_0 and g_0 fulfill: **a** $f_0(0) = g_0(0)$ if m > 1**b** $\int_0^{+\infty} |f_0(t) - g_0(t)|^2 / t dt < +\infty$ if m=1

Lemma

For $u \in H^m(\Omega)$ f_0 and g_0 fulfill: **a** $f_0(0) = g_0(0)$ if m > 1**b** $\int_0^{+\infty} |f_0(t) - g_0(t)|^2 / t dt < +\infty$ if m=1

Proof: Condition a is obvious because u is continuous by Sobolev's Theorem then. Condition b holds because there is a constant C such that:

$$\int_{0}^{+\infty} |f_0(t) - g_0(t)|^2 / t dt \leq C ||u||_{1,\Omega}^2$$

For smooth u write:

$$f_0(t) - g_0(t) = u(t,0) - u(t,t) + u(t,t) - u(0,t)$$
$$= \int_0^t \frac{\partial u}{\partial x}(s,t) - \frac{\partial u}{\partial y}(t,s) ds$$

Proof continues

Applying Cauchy-Schwarz equation

$$\begin{aligned} a(s,t) &= \frac{\partial u}{\partial x}(s,t) - \frac{\partial u}{\partial y}(t,s) \\ \left(\int_0^t a(s,t) \cdot 1 ds\right)^2 &\leq \int_0^t a(s,t)^2 ds \int_0^t 1^2 ds \\ \int_0^{+\infty} \frac{1}{t} \left(\int_0^t a(s,t) \cdot 1 ds\right)^2 dt &\leq \int_0^{+\infty} \int_0^t a(s,t)^2 ds dt \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proof continues

Applying Cauchy-Schwarz equation

$$\begin{aligned} a(s,t) &= \frac{\partial u}{\partial x}(s,t) - \frac{\partial u}{\partial y}(t,s) \\ \left(\int_0^t a(s,t) \cdot 1 ds\right)^2 &\leq \int_0^t a(s,t)^2 ds \int_0^t 1^2 ds \\ \int_0^{+\infty} \frac{1}{t} \left(\int_0^t a(s,t) \cdot 1 ds\right)^2 dt &\leq \int_0^{+\infty} \int_0^t a(s,t)^2 ds dt \end{aligned}$$

and some geometry

$$(a+b)^2 = a^2 + 2ab + b^2 \le 2a^2 + 2b^2$$

 $0 \le (a-b)^2 = a^2 - 2ab + b^2 \implies 2ab \le a^2 + b^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof complete

put together

$$\int_{0}^{+\infty} \int_{0}^{t} \left(\frac{\partial u}{\partial x}(s,t) - \frac{\partial u}{\partial y}(t,s) \right)^{2} ds dt$$

$$\leq 2 \int_{0}^{+\infty} \int_{0}^{t} \left| \frac{\partial u}{\partial x}(s,t) \right|^{2} + \left| \frac{\partial u}{\partial y}(t,s) \right|^{2} ds dt$$

$$\leq 2 ||u||_{1,\Omega}^{2}$$

Due to density the estimate remains valid for all $u \in H^1(\Omega)$ which completes the proof of condition b).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Continuation

For now let Ω be the half-plane x > 0. Then any $u \in H^2(\Omega)$ can be extended into a function in $H^2(\mathbb{R}^2)$.

Proof by mirror images

For x < 0 define: $P_m u(x, y) = c_1 u(-x, y) + c_2 u(-2x, y)$

$$P_m u(0^-, y) = c_1 u(0^+, y) + c_2 u(0^+, y)$$

$$\frac{\partial P_m u}{\partial x}|_{x=0^-} = -c_1 \frac{\partial u}{\partial x}|_{x=0^+} - 2c_2 \frac{\partial u}{\partial x}|_{x=0^+}$$

Thus $P_m u \in H^2(\mathbb{R}^2)$ iff $c_1 + c_2 = 1$ and $-c_1 - 2c_2 = 1$. This works for non-smooth u as well by density, as one easily shows: $||P_m u||_{2,\mathbb{R}^2} \leq C||u||_{2,\Omega}$

Continuation from a quarter of space to a half-space work as well, and the same procedure works in \mathbb{R}^1 .

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Trace Theorem for quadrant

Let $\Omega = \{(x, y) \in \mathbb{R}^2 | x > 0, y > 0\}$. The mapping:

$$u \rightarrow \{f_0, f_1, g_0, g_1\}$$

$$f_0 = u|_{y=0}, f_1 = \frac{\partial u}{\partial y}|_{y=0}$$

$$g_0 = u|_{x=0}, g_1 = \frac{\partial u}{\partial x}|_{x=0}$$

defined for smooth u has a unique continuous extension from $H^2(\Omega)$ onto the subspace of

$$\mathcal{T} = \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+) imes \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+)$$

defined by:

$$\begin{array}{l} a \ f_0(0) = g_0(0) \\ b_1 \ \int_0^{+\infty} |\frac{\partial f_0}{\partial x}(t) - g_1(t)|^2 / t dt < +\infty \\ b_2 \ \int_0^{+\infty} |f_1(t) - \frac{\partial g_0}{\partial y}(t)|^2 / t dt < +\infty \end{array}$$

Proof necessity

- By the continuation property we can extend u ∈ H²(Ω) into U ∈ H²(ℝ²).
- For *U* the trace theorem on hyperplanes can be applied:

$$\{f_0, f_1, g_0, g_1\} \in T = H^{3/2}(\mathbb{R}_+) \times H^{1/2}(\mathbb{R}_+) \times H^{3/2}(\mathbb{R}_+) \times H^{1/2}(\mathbb{R}_+)$$

Now applying the Lemma to to u, \frac{\partial u}{\partial x}\$ and \frac{\partial u}{\partial y}\$ proves the necessity of the conditions a, b1, b2.

Proof sufficiency 1

- Start from functions {f₀, f₁, g₀, g₁} ∈ T fulfilling the conditions:
- Use continuation on $\{g_0, g_1\}$ to $\{G_0, G_1\} \in H^{3/2}(\mathbb{R}) \times H^{1/2}(\mathbb{R})$
- By surjectivity of the trace theorem on hyperplanes there is a $V \in H^2(\mathbb{R}^2)$ with $\frac{\partial^k V}{\partial x^k}|_{x=0} = G_k$, k = 0, 1
- Now search for w such that $\frac{\partial^k w}{\partial y^k}|_{y=0} = f_k \frac{\partial^k V}{\partial y^k}|_{y=0}$ and $\frac{\partial^k w}{\partial x^k}|_{x=0} = 0$ taking use of the special case.
- Then $u = V|_{\Omega} + w$ will have the required traces.

Proof sufficiency 2

• Define:
$$\phi_0 = V|_{y=0}$$
, $\phi_1 = \frac{\partial V}{\partial y}|_{y=0}$

• By the necessity part of the Theorem we have:

$$egin{array}{l} a* \ \phi_0(0) &= g_0(0) \ b_1* \ \int_0^{+\infty} |rac{\partial \phi_0}{\partial x}(t) - g_1(t)|^2/t dt < +\infty \ b_2* \ \int_0^{+\infty} |\phi_1(t) - rac{\partial g_0}{\partial y}(t)|^2/t dt < +\infty \end{array}$$

• Then for $\psi_k = f_k - \phi_k$ one has:

$$egin{array}{lll} a** \ \psi_0(0) = 0 \ b_1 ** \ \int_0^{+\infty} |\psi_1(t)|^2/t dt < +\infty \ b_2 ** \ \int_0^{+\infty} |rac{\partial \psi_0}{\partial x}|^2/t dt < +\infty \end{array}$$

- Conditions ** follow from a, b_{1,2} and a*, b_{1,2}* with triangle inequality
- These are the assumptions of the special case, so the existence of *w* is proven.

Trace Theorem for quadrant

Let $\Omega = \{(x, y) \in \mathbb{R}^2 | x > 0, y > 0\}$. The mapping:

$$u \rightarrow \{f_0, f_1, g_0, g_1\}$$

$$f_0 = u|_{y=0}, f_1 = \frac{\partial u}{\partial y}|_{y=0}$$

$$g_0 = u|_{x=0}, g_1 = \frac{\partial u}{\partial x}|_{x=0}$$

defined for smooth u has a unique continuous extension from $H^2(\Omega)$ onto the subspace of

$$\mathcal{T} = \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+) imes \mathcal{H}^{3/2}(\mathbb{R}_+) imes \mathcal{H}^{1/2}(\mathbb{R}_+)$$

defined by:

$$\begin{array}{l} a \ f_0(0) = g_0(0) \\ b_1 \ \int_0^{+\infty} |\frac{\partial f_0}{\partial x}(t) - g_1(t)|^2 / t dt < +\infty \\ b_2 \ \int_0^{+\infty} |f_1(t) - \frac{\partial g_0}{\partial y}(t)|^2 / t dt < +\infty \end{array}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of Contents

Boundary Properties

2 Prerequisites

3 Trace Theorem for polygonal Domains

- Proof of special case
- Lemma
- Continuation property
- Proof of Theorem
- Steps towards arbitrary Polygonal Domain

Sector of arbitrary angle

- For a sector with angle ω ∈ (0, π) just apply a linear change of coordinates
- Then apply the Theorem, because $||.||_{m,\Omega}$ remain unaffected
- The traces then become: $\{f_i = \gamma_1 \frac{\partial^i}{\partial \tau_2^i} u\}, \{g_i = \gamma_2 \frac{\partial^i}{\partial \tau_1^i} u\}$
- One prefers having traces in terms of: $\{F_i = \gamma_1 \frac{\partial^i}{\partial \nu_1^i} u\}, \{G_i = \gamma_2 \frac{\partial^i}{\partial \nu_2^i} u\}$
- $\tau_{1,2}$ and $\nu_{1,2}$ are tangential and normal vectors of the line segments

• we can have:
$$\begin{array}{rcl} \tau_2 &=& \alpha \tau_1 + \beta \nu_1 \\ \nu_2 &=& \beta \tau_1 - \alpha \nu_1 \end{array}$$

then we have new conditions: (in H^2) $g_1(0) \equiv \frac{\partial f_0}{\partial t}(0) \rightarrow \begin{array}{c} G_1(0) \equiv \beta \frac{\partial F_0}{\partial t}(0) - \alpha F_1(0) \\ \frac{\partial g_0}{\partial t}(0) \equiv f_1(0) \end{array} \rightarrow \begin{array}{c} \frac{\partial G_0}{\partial t}(0) \equiv \alpha \frac{\partial F_0}{\partial t}(0) + \beta F_1(0) \end{array}$

Non-convex Vertices

- $\bullet\,$ Linear change of coordinats doesn't work for $\omega \geq \pi$
- For $\omega = \pi$ we have the trace theorem on hyperplanes

• with
$$\begin{array}{c} Aec{u}=e_1\\ Aec{v}=e_2 \end{array}$$
 we always have $Arac{ec{u}+ec{v}}{2}=+rac{e_1+e_2}{2}$

- \bullet Thus we need to consider the case Ω is a three-quarter-space
- The Theorem is valid for three-quarter-space as well, by the continuation property
- \implies then we have the Theorem for arbitrary angels

Continuation from three-quarter space

Remember

$$P_m u = \begin{cases} u(x,y) & x > 0\\ c_1 u(-x,y) + c_2 u(-2x,y) & x < 0 \end{cases}$$

first note

$$u(x, y > 0) = 0 \implies P_m u(x, y > 0) = 0$$

then one has

•
$$V = P_m(u|_{y>0})$$

•
$$w = (u - V|_{\Omega})|_{x>0}$$

•
$$w(x, y > 0) = 0 \implies W = P_m w(x, y > 0) = 0$$

- Now U = V + W is the continuation
- for y > 0: $W = 0, U = V, V|_{y>0} = u$
- for y < 0 and x > 0: $U = V + W = V + (u V|_{\Omega}) = u$

Connection to finite domains

The step from a single corner to a finite domain with multiple vertices is done by partition of unity

- This is a method used regulary in Sobolev Space to localise certain properties
- I only give a sketch of the idea here:
- In our case we have one function per corner c_i(x, y) with values in [0, 1]

•
$$\forall (x,y) \in \Omega : \sum_{i=1}^{N} c_i(x,y) = 1$$

- close to corner *i* the function $c_i = 1$ all others are zero
- we have properties for every single plane sector G_i from Theorem
- One can "glue" it together

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention!