Vertex behaviour in 3d

Armin Fohler

10th December, 2013

æ

Maximal regularity

..., instead of describing explicitly the part of the solution that does not belong to H^2 , we look for the best exponent *s* such that the solution belongs to H^s .

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} f v dx \qquad \forall v \in V$$
(2.1.1)

We know that $\exists ! u \in V = \left\{ v \in H^1(\Omega) : \gamma_j v = 0 \text{ on } \Gamma_j; j \in D \right\}$

- I) Faces
- II) Edges
- III) Vertices

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} f v dx \qquad \forall v \in V$$
(2.1.1)

We know that $\exists ! u \in V = \left\{ v \in H^1(\Omega) : \gamma_j v = 0 \text{ on } \Gamma_j; j \in D \right\}$

I) Faces

Theorem 2.1.4

 $\varphi u \in H^{2}(\Omega)$ for every $\varphi \in D(\overline{\Omega})$ whose support is part of the interior of Γ_{j} .

II) Edges

III) Vertices

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} f v dx \qquad \forall v \in V$$
(2.1.1)

►

We know that $\exists ! u \in V = \left\{ v \in H^1(\Omega) : \gamma_j v = 0 \text{ on } \Gamma_j; j \in D \right\}$

I) Faces

Edges

Proposition 2.6.1

 $\varphi u \in H^{s}(\Omega)$ for every $s \leq 2$ with $s < \Lambda + 1$ and every $\varphi \in D(\overline{\Omega})$ whose support is away from the vertices.

III) Vertices

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} f v dx \qquad \forall v \in V$$
(2.1.1)

We know that $\exists ! u \in V = \left\{ v \in H^1(\Omega) : \gamma_j v = 0 \text{ on } \Gamma_j; j \in D \right\}$

- I) Faces
- II) Edges
- III) Vertices

Theorem 2.6.3

There exists unique numbers c_k such that

$$u - \sum_{k} c_{k} \rho^{-1/2 + \sqrt{(\lambda_{k} + 1/4)}} \psi_{k}(\sigma) \in H^{s}(V)$$

for every $s \leq 2$ with $s < \Lambda + 1$; and $\lambda_k \geq s^2 - 2s + \frac{3}{4}$.

Theorem 2.6.3

Let Ω be a bounded polyhedral open subset of \mathbb{R}^3 . For $f \in L^2(\Omega)$ let u be the solution of (2.1.1) then there exists unique numbers c_k such that

$$u - \sum_{k} c_{k} \rho^{-1/2 + \sqrt{(\lambda_{k} + 1/4)}} \psi_{k}(\sigma) \in H^{s}(V)$$

for every $s \le 2$ with $s < \Lambda + 1$, where the sum is over the k such that $\lambda_k \le s^2 - 2s + \frac{3}{4}$.

$$\int_{\Omega} \nabla u \nabla v dx = -\int_{\Omega} f v dx \qquad (2.1.1)$$

Transformation to spherical coordinates yields:

$$\frac{\partial^2 u}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial u}{\partial \rho} + \frac{1}{\rho^2} \Delta' u = f$$
(2.6.1)

with the Laplace-Beltrami-Operator $\Delta' u$ on S^2

$$m{v}\mapsto rac{1}{\sinarphi}rac{\sinarphi\,\partialm{v}/\partialarphi}{\partialarphi}+(\sin^2arphi)^{-2}rac{\partial^2m{v}}{\partial heta^2}$$

We define the Operator $\ensuremath{\mathcal{B}}$

$$b(v,w) = \int_{G} \left(\sin\varphi \frac{\partial v}{\partial \varphi} \frac{\partial w}{\partial \varphi} + \frac{1}{\sin\varphi} \frac{\partial v}{\partial \theta} \frac{\partial w}{\partial \theta} \right) d\varphi d\theta$$

for v, w $\in \mathcal{V}$.

$$\mathcal{B}v = -\Delta'v \quad \text{for } v \in D_{\mathcal{B}};$$

 $D_{\mathcal{B}} = \left\{ v \in \mathcal{V}; \Delta'v \in L^2(G) \text{ and } b(v,w) = -\int_G \Delta'vwd\sigma \quad \forall w \in \mathcal{V}
ight\}$

 ${\mathcal B}$ is a self-adjoint operator in ${\mathcal H}$

with eigenvalues $\lambda_k \in \mathbb{R}_0^+$ for k = 1, 2, ...and eigenfunctions $\psi_k \in D_{\mathcal{B}}$. Thus

 $\mathcal{B}\psi_k = \lambda_k \psi_k$ in G.

With
$$\rho = e^t (\rho < R)$$
 and $v(t, \sigma) = e^{(-s+3/2)t}u(e^t\sigma)$;
 $g(t, \sigma) = e^{(-s+7/2)t}f(e^t\sigma)$;

(2.6.1) becomes:

$$\frac{\partial^2 v}{\partial t^2} + 2(s-1)\frac{\partial v}{\partial t} + \Delta' v + (s-\frac{1}{2})(s-\frac{3}{2})v = g \quad (2.6.3)$$

▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

 $\text{ in } (-\infty, \textit{InR}) \times \textit{G} \text{ and } \textit{v}(t,.) \in \textit{D}_{\mathscr{B}} \quad \forall t.$

Lemma 2.6.4

Assume $(s - \frac{1}{2})(s - \frac{3}{2})$ is not an eigenvalue of $-\mathcal{B}$. Then there exists $v_0 \in H^s(\mathbb{R} \times G)$ solution of (2.6.3) in $\mathbb{R} \times G$ and such that $v_0(t, .) \in D_{\mathcal{B}} \quad \forall t \in \mathbb{R}$.

using:

Lemma 2.6.2

One has $D_{\mathcal{B}} \subset H^{s}(G)$ for every $s \leq 2$ such that $s < \Lambda + 1$.

Therefore

$$v_0 \in H^s(\mathbb{R} \times G);$$

Using an inverse transformation we define u_0 on C:

$$u_0(\rho\sigma) = \rho^{s-3/2} v_0(\ln\rho, \sigma).$$
(2)

with

Lemma 2.6.5

Assume $\varphi \in H^{s}((-\infty, \ln R) \times G)$ then $\rho^{s-3/2}\varphi \in H^{s}(C(R))$ $\forall s \geq 0.$

we get $u_0 \in H^s(C(R))$.

The following holds:

$$\Delta u_0 = f$$

and u_0 fulfills the same boundary conditions as u, since $v_0(\ln\rho, .) \in D_{\mathcal{B}} \quad \forall \rho.$

Thus $u - u_0 \in D_{\mathcal{B}}$ and we get that $(u - u_0) \in H^1(C(R))$.

Inserting in (2.6.3) yields

$$\frac{\partial^2(u-u_0)}{\partial\rho^2} + \frac{2}{\rho}\frac{\partial(u-u_0)}{\partial\rho} + \frac{1}{\rho^2}\Delta'(u-u_0) = 0$$

expressed in eigenfunctions of \mathcal{B} we write:

$$u-u_0=\sum_{k\geq 1}(a_k\rho^{\alpha_k}+b_k\rho^{\beta_k})\psi_k(\sigma)$$

Since

Theorem 1.2.19

... let u be a function which is smooth in $\overline{\Omega} \setminus 0$ and which coincides with $\rho^{\alpha}\varphi(\sigma)$ in $V \cap \Omega$ where $\varphi \in H^{s_0}(G)$. Then for every $s < s_0$ one has

$$u \in H^{s}(\Omega)$$
 for $Re(\alpha) > s - 1$
 $u \notin H^{s}(\Omega)$ for $Re(\alpha) \leq s - 1$

when $Re(\alpha)$ is not an integer.

we get $b_k = 0$.

The rest corresponding to $\alpha_k > s - 3/2$ converges in $H^s(C(R'))$ for R' < R, because of

Lemma 2.6.6

The functions $\rho^{\alpha_k}\psi_k(\sigma)$ belong to $H^s(C(R))$ for $\alpha_k > s - 3/2$ and in addition $\|\rho^{\alpha_k}\psi_k(\sigma)\|_{s,C(R)} = O(kR^{\alpha_k})$.

with Parseval's identity

$$\sum_{k\geq 1}a_k^2R^{2lpha_k}=\int_G|(u-u_0)(R\sigma)|^2d\sigma<\infty$$

we get:

$$\|\sum_{k}a_{k}\rho^{\alpha_{k}}\psi_{k}\|_{s,C(R')}\leq O(\sum_{k}kR'^{\alpha_{k}}|a_{k}|)<\infty$$

for $\alpha_k > s - 3/2$ or equivalently: $\lambda_k \ge s^2 - 2s + 3/4$.

This concludes the proof of Theorem 2.6.3.

Corollary 2.6.7

Let Ω be any bounded polyhedral open subset of \mathbb{R}^3 , then there exists $s_0 \geq \frac{3}{2}$ such that for every $f \in L^2(\Omega)$ the variational solution u of the problem (2.1.1), in the case of pure Dirichlet or pure Neumann boundary condition, belongs to $H^s(\Omega)$ for every $s < s_0$.

Corollary 2.6.8

Let Ω be a convex bounded polyhedral open subset of \mathbb{R}^3 , then for every $f \in L^2(\Omega)$ the variational solution u of the problem (2.1.1), in the case of pure Dirichlet boundary condition, belongs to $H^2(\Omega)$.

Corollary 2.6.9

A similar H^2 regularity result in any convex polyhedron for a pure Neumann boundary value problem is also true. However the above method (relying on a monotonicity property of the eigenvalues of the Laplace-Beltrami operator) does not work.

Theorem 2.5.12

Under the assumptions of Theorem 2.5.11 ($f \in L^2(Q)$; *u* solution of $\int_Q \nabla u \nabla v dx = -\int_Q f v dx$) and given *j*, let V_j be an open neighborhood of S_j in $\overline{\Omega}$ which does not contain any other corner, then *u* belongs to $H^s(V_j \times \mathbb{R})$ for every $s \leq 2$ such that $s < \lambda_{j,m} + 1$ for all $\lambda_{j,m}$ such that $0 < \lambda_{j,m} < 1$.

۲