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Maximal regularity

..., instead of describing explicitly the part of the solution that
does not belong to H2, we look for the best exponent s such that
the solution belongs to Hs .
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For Ω bounded, polyhedral subset of R3, f ∈ L2 (Ω) find u ∈ V :∫
Ω
∇u∇vdx = −

∫
Ω
fvdx ∀v ∈ V (2.1.1)

We know that ∃!u ∈ V =
{
v ∈ H1(Ω) : γjv = 0 on Γj ; j ∈ D

}
I) Faces

II) Edges

III) Vertices
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For Ω bounded, polyhedral subset of R3, f ∈ L2 (Ω) find u ∈ V :∫
Ω
∇u∇vdx = −

∫
Ω
fvdx ∀v ∈ V (2.1.1)

We know that ∃!u ∈ V =
{
v ∈ H1(Ω) : γjv = 0 on Γj ; j ∈ D

}
I) Faces

Theorem 2.1.4

ϕu ∈ H2 (Ω) for every ϕ ∈ D
(
Ω
)

whose support is part of the
interior of Γj .

II) Edges

III) Vertices
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For Ω bounded, polyhedral subset of R3, f ∈ L2 (Ω) find u ∈ V :∫
Ω
∇u∇vdx = −

∫
Ω
fvdx ∀v ∈ V (2.1.1)

We know that ∃!u ∈ V =
{
v ∈ H1(Ω) : γjv = 0 on Γj ; j ∈ D

}
I) Faces

II) Edges

Proposition 2.6.1

ϕu ∈ Hs (Ω) for every s ≤ 2 with s < Λ + 1 and every ϕ ∈ D
(
Ω
)

whose support is away from the vertices.

III) Vertices
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For Ω bounded, polyhedral subset of R3, f ∈ L2 (Ω) find u ∈ V :∫
Ω
∇u∇vdx = −

∫
Ω
fvdx ∀v ∈ V (2.1.1)

We know that ∃!u ∈ V =
{
v ∈ H1(Ω) : γjv = 0 on Γj ; j ∈ D

}
I) Faces

II) Edges

III) Vertices

Theorem 2.6.3

There exists unique numbers ck such that

u −
∑
k

ckρ
−1/2+

√
(λk+1/4)ψk(σ) ∈ Hs (V )

for every s ≤ 2 with s < Λ + 1; and λk ≥ s2 − 2s + 3
4 .
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The Main Theorem

Theorem 2.6.3

Let Ω be a bounded polyhedral open subset of R3. For f ∈ L2 (Ω)
let u be the solution of (2.1.1) then there exists unique numbers ck
such that

u −
∑
k

ckρ
−1/2+

√
(λk+1/4)ψk(σ) ∈ Hs (V )

for every s ≤ 2 with s < Λ + 1, where the sum is over the k such
that λk ≤ s2 − 2s + 3

4 .

Armin Fohler 3d Vertices



∫
Ω
∇u∇vdx = −

∫
Ω
fvdx (2.1.1)

Transformation to spherical coordinates yields:

∂2u

∂ρ2
+

2

ρ

∂u

∂ρ
+

1

ρ2
∆′u = f (2.6.1)

with the Laplace-Beltrami-Operator ∆′u on S2

v 7→ 1

sinϕ

sinϕ∂v/∂ϕ

∂ϕ
+ (sin2ϕ)−2∂

2v

∂θ2

We define the Operator B

b(v ,w) =

∫
G

(
sinϕ

∂v

∂ϕ

∂w

∂ϕ
+

1

sinϕ

∂v

∂θ

∂w

∂θ

)
dϕdθ

for v, w ∈ V .
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Bv = −∆′v for v ∈ DB ;

DB =

{
v ∈ V ; ∆′v ∈ L2(G ) and b(v ,w) = −

∫
G

∆′vwdσ ∀w ∈ V
}

B is a self-adjoint operator in H

with eigenvalues λk ∈ R+
0 for k = 1, 2, ...

and eigenfunctions ψk ∈ DB . Thus

Bψk = λkψk in G .
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With ρ = et (ρ < R) and v(t, σ) = e(−s+3/2)tu(etσ);

g(t, σ) = e(−s+7/2)t f (etσ);

(2.6.1) becomes:

∂2v

∂t2
+ 2(s − 1)

∂v

∂t
+ ∆′v + (s − 1

2
)(s − 3

2
)v = g (2.6.3)

in (−∞, lnR)× G and v(t, .) ∈ DB ∀t.
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Lemma 2.6.4

Assume (s − 1
2 )(s − 3

2 ) is not an eigenvalue of −B.
Then there exists v0 ∈ Hs(R× G ) solution of (2.6.3) in R× G and
such that v0(t, .) ∈ DB ∀t ∈ R.

using:

Lemma 2.6.2

One has DB ⊂ Hs(G ) for every s ≤ 2 such that s < Λ + 1.
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Therefore

v0 ∈ Hs(R× G );

Using an inverse transformation we define u0 on C :

u0(ρσ) = ρs−3/2v0(lnρ, σ). (2)

with

Lemma 2.6.5

Assume ϕ ∈ Hs((−∞, lnR)× G ) then ρs−3/2ϕ ∈ Hs(C (R))
∀s ≥ 0.

we get u0 ∈ Hs(C (R)).
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The following holds:

∆u0 = f

and u0 fulfills the same boundary conditions as u, since
v0(lnρ, .) ∈ DB ∀ρ.

Thus u − u0 ∈ DB and we get that (u − u0) ∈ H1(C (R)).

Inserting in (2.6.3) yields

∂2(u − u0)

∂ρ2
+

2

ρ

∂(u − u0)

∂ρ
+

1

ρ2
∆′(u − u0) = 0

expressed in eigenfunctions of B we write:

u − u0 =
∑
k≥1

(akρ
αk + bkρ

βk )ψk(σ)
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Since

Theorem 1.2.19

... let u be a function which is smooth in Ω \ 0 and which
coincides with ραϕ(σ) in V ∩Ω where ϕ ∈ Hs0(G ). Then for every
s < s0 one has

u ∈ Hs(Ω) for Re(α) > s − 1

u /∈ Hs(Ω) for Re(α) ≤ s − 1

when Re(α) is not an integer.

we get bk = 0.
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The rest corresponding to αk > s − 3/2 converges in Hs(C (R ′))
for R ′ < R, because of

Lemma 2.6.6

The functions ραkψk(σ) belong to Hs(C (R)) for αk > s − 3/2 and
in addition ‖ραkψk(σ)‖s,C(R) = O(kRαk ).

with Parseval’s identity∑
k≥1

a2
kR

2αk =

∫
G
|(u − u0)(Rσ)|2dσ <∞

we get:

‖
∑
k

akρ
αkψk‖s,C(R′) ≤ O(

∑
k

kR ′αk |ak |) <∞

for αk > s − 3/2 or equivalently: λk ≥ s2 − 2s + 3/4.

This concludes the proof of Theorem 2.6.3. �
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Corollary 2.6.7

Let Ω be any bounded polyhedral open subset of R3, then there
exists s0 ≥ 3

2 such that for every f ∈ L2(Ω) the variational solution
u of the problem (2.1.1), in the case of pure Dirichlet or pure
Neumann boundary condition, belongs to Hs(Ω) for every s < s0.
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Corollary 2.6.8

Let Ω be a convex bounded polyhedral open subset of R3, then for
every f ∈ L2(Ω) the variational solution u of the problem (2.1.1),
in the case of pure Dirichlet boundary condition, belongs to H2(Ω).
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Corollary 2.6.9

A similar H2 regularity result in any convex polyhedron for a pure
Neumann boundary value problem is also true. However the above
method (relying on a monotonicity property of the eigenvalues of
the Laplace-Beltrami operator) does not work.
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Theorem 2.5.12

Under the assumptions of Theorem 2.5.11 (f ∈ L2(Q); u solution
of
∫
Q ∇u∇vdx = −

∫
Q fvdx) and given j , let Vj be an open

neighborhood of Sj in Ω which does not contain any other corner,
then u belongs to Hs(Vj × R) for every s ≤ 2 such that
s < λj ,m + 1 for all λj ,m such that 0 < λj ,m < 1.
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