Vertex behaviour in 3d

Armin Fohler

$10^{\text {th }}$ December, 2013

Maximal regularity

\ldots... instead of describing explicitly the part of the solution that does not belong to H^{2}, we look for the best exponent s such that the solution belongs to H^{s}.

For Ω bounded, polyhedral subset of $\mathbb{R}^{3}, f \in L^{2}(\Omega)$ find $u \in V$:

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x=-\int_{\Omega} f v d x \quad \forall v \in V \tag{2.1.1}
\end{equation*}
$$

We know that $\exists!u \in V=\left\{v \in H^{1}(\Omega): \gamma_{j} v=0\right.$ on $\left.\Gamma_{j} ; j \in \mathcal{D}\right\}$
I) Faces
II) Edges
III) Vertices

For Ω bounded, polyhedral subset of $\mathbb{R}^{3}, f \in L^{2}(\Omega)$ find $u \in V$:

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x=-\int_{\Omega} f v d x \quad \forall v \in V \tag{2.1.1}
\end{equation*}
$$

We know that $\exists!u \in V=\left\{v \in H^{1}(\Omega): \gamma_{j} v=0\right.$ on $\left.\Gamma_{j} ; j \in \mathcal{D}\right\}$
I) Faces

Theorem 2.1.4
$\varphi u \in H^{2}(\Omega)$ for every $\varphi \in D(\bar{\Omega})$ whose support is part of the interior of Γ_{j}.
II) Edges
III) Vertices

For Ω bounded, polyhedral subset of $\mathbb{R}^{3}, f \in L^{2}(\Omega)$ find $u \in V$:

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x=-\int_{\Omega} f v d x \quad \forall v \in V \tag{2.1.1}
\end{equation*}
$$

We know that $\exists!u \in V=\left\{v \in H^{1}(\Omega): \gamma_{j} v=0\right.$ on $\left.\Gamma_{j} ; j \in \mathcal{D}\right\}$
I) Faces
II) Edges

Proposition 2.6.1
$\varphi u \in H^{s}(\Omega)$ for every $s \leq 2$ with $s<\Lambda+1$ and every $\varphi \in D(\bar{\Omega})$ whose support is away from the vertices.
III) Vertices

For Ω bounded, polyhedral subset of $\mathbb{R}^{3}, f \in L^{2}(\Omega)$ find $u \in V$:

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x=-\int_{\Omega} f v d x \quad \forall v \in V \tag{2.1.1}
\end{equation*}
$$

We know that $\exists!u \in V=\left\{v \in H^{1}(\Omega): \gamma_{j} v=0\right.$ on $\left.\Gamma_{j} ; j \in \mathcal{D}\right\}$
I) Faces
II) Edges
III) Vertices

Theorem 2.6.3

There exists unique numbers c_{k} such that

$$
u-\sum_{k} c_{k} \rho^{-1 / 2+\sqrt{\left(\lambda_{k}+1 / 4\right)}} \psi_{k}(\sigma) \in H^{s}(V)
$$

for every $s \leq 2$ with $s<\Lambda+1$; and $\lambda_{k} \geq s^{2}-2 s+\frac{3}{4}$.

The Main Theorem

Theorem 2.6.3

Let Ω be a bounded polyhedral open subset of \mathbb{R}^{3}. For $f \in L^{2}(\Omega)$ let u be the solution of (2.1.1) then there exists unique numbers c_{k} such that

$$
u-\sum_{k} c_{k} \rho^{-1 / 2+\sqrt{\left(\lambda_{k}+1 / 4\right)}} \psi_{k}(\sigma) \in H^{s}(V)
$$

for every $s \leq 2$ with $s<\Lambda+1$, where the sum is over the k such that $\lambda_{k} \leq s^{2}-2 s+\frac{3}{4}$.

$$
\begin{equation*}
\int_{\Omega} \nabla u \nabla v d x=-\int_{\Omega} f v d x \tag{2.1.1}
\end{equation*}
$$

Transformation to spherical coordinates yields:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}} \Delta^{\prime} u=f \tag{2.6.1}
\end{equation*}
$$

with the Laplace-Beltrami-Operator $\Delta^{\prime} u$ on S^{2}

$$
v \mapsto \frac{1}{\sin \varphi} \frac{\sin \varphi \partial v / \partial \varphi}{\partial \varphi}+\left(\sin ^{2} \varphi\right)^{-2} \frac{\partial^{2} v}{\partial \theta^{2}}
$$

We define the Operator \mathcal{B}

$$
b(v, w)=\int_{G}\left(\sin \varphi \frac{\partial v}{\partial \varphi} \frac{\partial w}{\partial \varphi}+\frac{1}{\sin \varphi} \frac{\partial v}{\partial \theta} \frac{\partial w}{\partial \theta}\right) d \varphi d \theta
$$

for $v, w \in \mathcal{V}$.

$$
\begin{aligned}
& \mathcal{B} v=-\Delta^{\prime} v \quad \text { for } v \in D_{\mathcal{B}} ; \\
D_{\mathcal{B}}= & \left\{v \in \mathcal{V} ; \Delta^{\prime} v \in L^{2}(G) \text { and } b(v, w)=-\int_{G} \Delta^{\prime} v w d \sigma \quad \forall w \in \mathcal{V}\right\}
\end{aligned}
$$

\mathcal{B} is a self-adjoint operator in \mathcal{H}
with eigenvalues $\lambda_{k} \in \mathbb{R}_{0}^{+}$for $k=1,2, \ldots$
and eigenfunctions $\psi_{k} \in D_{\mathcal{B}}$. Thus

$$
\mathcal{B} \psi_{k}=\lambda_{k} \psi_{k} \text { in } G .
$$

With $\rho=e^{t}(\rho<R)$ and $v(t, \sigma)=e^{(-s+3 / 2) t} u\left(e^{t} \sigma\right)$;

$$
g(t, \sigma)=e^{(-s+7 / 2) t} f\left(e^{t} \sigma\right)
$$

(2.6.1) becomes:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial t^{2}}+2(s-1) \frac{\partial v}{\partial t}+\Delta^{\prime} v+\left(s-\frac{1}{2}\right)\left(s-\frac{3}{2}\right) v=g \tag{2.6.3}
\end{equation*}
$$

in $(-\infty, \ln R) \times G$ and $v(t,.) \in D_{\mathcal{B}} \quad \forall t$.

Lemma 2.6.4

Assume $\left(s-\frac{1}{2}\right)\left(s-\frac{3}{2}\right)$ is not an eigenvalue of $-\mathcal{B}$.
Then there exists $v_{0} \in H^{s}(\mathbb{R} \times G)$ solution of (2.6.3) in $\mathbb{R} \times G$ and such that $v_{0}(t,.) \in D_{\mathcal{B}} \quad \forall t \in \mathbb{R}$.
using:

Lemma 2.6.2

One has $D_{\mathcal{B}} \subset H^{s}(G)$ for every $s \leq 2$ such that $s<\Lambda+1$.

Therefore

$$
v_{0} \in H^{s}(\mathbb{R} \times G)
$$

Using an inverse transformation we define u_{0} on C :

$$
\begin{equation*}
u_{0}(\rho \sigma)=\rho^{s-3 / 2} v_{0}(\ln \rho, \sigma) \tag{2}
\end{equation*}
$$

with

Lemma 2.6.5

Assume $\varphi \in H^{s}((-\infty, \ln R) \times G)$ then $\rho^{s-3 / 2} \varphi \in H^{s}(C(R))$ $\forall s \geq 0$.
we get $u_{0} \in H^{s}(C(R))$.

The following holds:

$$
\Delta u_{0}=f
$$

and u_{0} fulfills the same boundary conditions as u, since $v_{0}(\ln \rho,.) \in D_{\mathcal{B}} \quad \forall \rho$.

Thus $u-u_{0} \in D_{\mathcal{B}}$ and we get that $\left(u-u_{0}\right) \in H^{1}(C(R))$.
Inserting in (2.6.3) yields

$$
\frac{\partial^{2}\left(u-u_{0}\right)}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial\left(u-u_{0}\right)}{\partial \rho}+\frac{1}{\rho^{2}} \Delta^{\prime}\left(u-u_{0}\right)=0
$$

expressed in eigenfunctions of \mathcal{B} we write:

$$
u-u_{0}=\sum_{k \geq 1}\left(a_{k} \rho^{\alpha_{k}}+b_{k} \rho^{\beta_{k}}\right) \psi_{k}(\sigma)
$$

Since

Theorem 1.2.19

... let u be a function which is smooth in $\bar{\Omega} \backslash 0$ and which coincides with $\rho^{\alpha} \varphi(\sigma)$ in $V \cap \Omega$ where $\varphi \in H^{s_{0}}(G)$. Then for every $s<s_{0}$ one has

$$
\begin{aligned}
& u \in H^{s}(\Omega) \text { for } \operatorname{Re}(\alpha)>s-1 \\
& u \notin H^{s}(\Omega) \text { for } \operatorname{Re}(\alpha) \leq s-1
\end{aligned}
$$

when $\operatorname{Re}(\alpha)$ is not an integer.
we get $b_{k}=0$.

The rest corresponding to $\alpha_{k}>s-3 / 2$ converges in $H^{s}\left(C\left(R^{\prime}\right)\right)$ for $R^{\prime}<R$, because of

Lemma 2.6.6

The functions $\rho^{\alpha_{k}} \psi_{k}(\sigma)$ belong to $H^{s}(C(R))$ for $\alpha_{k}>s-3 / 2$ and in addition $\left\|\rho^{\alpha_{k}} \psi_{k}(\sigma)\right\|_{s, C(R)}=O\left(k R^{\alpha_{k}}\right)$.
with Parseval's identity

$$
\sum_{k \geq 1} a_{k}^{2} R^{2 \alpha_{k}}=\int_{G}\left|\left(u-u_{0}\right)(R \sigma)\right|^{2} d \sigma<\infty
$$

we get:

$$
\left\|\sum_{k} a_{k} \rho^{\alpha_{k}} \psi_{k}\right\|_{s, C\left(R^{\prime}\right)} \leq O\left(\sum_{k} k R^{\prime \alpha_{k}}\left|a_{k}\right|\right)<\infty
$$

for $\alpha_{k}>s-3 / 2$ or equivalently: $\lambda_{k} \geq s^{2}-2 s+3 / 4$.
This concludes the proof of Theorem 2.6.3.

Corollary 2.6.7

Let Ω be any bounded polyhedral open subset of \mathbb{R}^{3}, then there exists $s_{0} \geq \frac{3}{2}$ such that for every $f \in L^{2}(\Omega)$ the variational solution u of the problem (2.1.1), in the case of pure Dirichlet or pure Neumann boundary condition, belongs to $H^{s}(\Omega)$ for every $s<s_{0}$.

Corollary 2.6.8

Let Ω be a convex bounded polyhedral open subset of \mathbb{R}^{3}, then for every $f \in L^{2}(\Omega)$ the variational solution u of the problem (2.1.1), in the case of pure Dirichlet boundary condition, belongs to $H^{2}(\Omega)$.

Corollary 2.6.9

A similar H^{2} regularity result in any convex polyhedron for a pure Neumann boundary value problem is also true. However the above method (relying on a monotonicity property of the eigenvalues of the Laplace-Beltrami operator) does not work.

Theorem 2.5.12

Under the assumptions of Theorem 2.5.11 $\left(f \in L^{2}(Q)\right.$; u solution of $\int_{Q} \nabla u \nabla v d x=-\int_{Q} f v d x$) and given j, let V_{j} be an open neighborhood of S_{j} in $\bar{\Omega}$ which does not contain any other corner, then u belongs to $H^{s}\left(V_{j} \times \mathbb{R}\right)$ for every $s \leq 2$ such that $s<\lambda_{j, m}+1$ for all $\lambda_{j, m}$ such that $0<\lambda_{j, m}<1$.

