Singular basis functions

Nadir Bayramov

Seminar on Numerical Analysis

7 January, 2014

Table of Contents

BVP with different sources of singularities

Model example in 1D First type of singularities Second type of singularities Third type of singularities

Numerical schemes and their accuracy

Loss of accuracy in the standard method Numerical methods without loss of convergence order

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Appendix

One-dimensional BVP:

$$-(ay')' = f, x \in (0,1),$$

 $y(0) = y(1) = 0$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where

- $a \ge a_0 > 0$ with discontinuity at $x = \xi$ $(0 < \xi < 1)$
- right-hand side f is piecewise smooth.

Motivating example

Thence we reformulate the problem: state equation

$$- (ay')' = f, \quad 0 < x < \xi \text{ and } \xi < x < 1,$$
 (1)

$$y(0) = y(1) = 0$$

and continuity conditions

$$\lim_{x \to \xi = 0} y(x) = \lim_{x \to \xi + 0} y(x),$$
$$\lim_{x \to \xi = 0} ay' = \lim_{x \to \xi + 0} ay',$$

or, briefly,

$$[y]_{x=\xi} = 0, \quad [ay']_{x=\xi} = 0.$$
 (2)

Motivating example

Even for smooth right-hand side f, usually the solution $y \notin H^2((0, 1))$. Example

Let
$$\xi = 1/2$$
, $f \equiv 1$, $a = \begin{cases} 2, & 0 \le x \le 1/2 \\ 1, & 1/2 < x \le 1 \end{cases}$.

Then the solution is

$$y = \begin{cases} -\frac{x^2}{4} + \frac{7}{24}x, & 0 \le x \le 1/2\\ -\frac{x^2}{2} + \frac{7}{12}x - \frac{1}{12}, & 1/2 < x \le 1 \end{cases}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

One can see $y \in H^1((0,1))$, but $y \notin H^2((0,1))$ (since y' is discontinuous).

Motivating example

Multiply the equation

$$-(ay')' = f, \quad 0 < x < \xi ext{ and } \xi < x < 1,$$

by an arbitrary function $\phi \in H_0^1((0,1))$ and integrate on (0,1). Then using integration by parts on $(0,\xi)$ and $(\xi,1)$ and jump condition from (2), we deduce

$$\int_{0}^{1} ay' \phi' \, dx = \int_{0}^{1} f \phi \, dx.$$
 (3)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The converse statement is also true: if $y \in H_0^1((0,1))$ satisfies (3) for any $\phi \in H_0^1((0,1))$, then it satisfies the system (1) and the conditions (2).

Variational numerical scheme in 1D

We focus on the variational solution y of the problem (3). Consider a variational scheme based on piecewise linear approximations and corresponding order of approximation.

Also consider on (0,1) a regular mesh $x_i = ih$, i = 1, ..., N, h = 1/N. Approximate solution $\tilde{v} \in V_h \subset H_0^1((0,1))$ satisfies the integral equation

$$\int_0^1 a \tilde{v}' \tilde{\phi}' \, dx = \int_0^1 f \tilde{\phi} \, dx$$

for any $ilde{\phi} \in V_h.$ For the approximation error $(y- ilde{
u})$ we have an estimate

$$\|y - \tilde{v}\|_{1,(0,1)} \leq C \|y - \tilde{y}\|_{1,(0,1)},$$

where \tilde{y} is a nodal interpolant of y(x).

Variational numerical scheme in 1D

When the point of discontinuity $\boldsymbol{\xi}$ coincides with one meshnode, the terms of

$$\|y - \tilde{y}\|_{1,(0,1)}^2 = \|y - \tilde{y}\|_{1,(0,\xi)}^2 + \|y - \tilde{y}\|_{1,(\xi,1)}^2$$

are estimated above by $Ch^2\|y\|_{2,(0,\xi)}^2$ and $Ch^2\|y\|_{2,(\xi,1)}^2.$ As a result,

$$||y - \tilde{v}||_{1,(0,1)} = O(h).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variational numerical scheme in 1D

When there is no meshnode in $O(h^2)$ -neighborhood of singular point ξ :

- for simplicity $\xi = 1/2$
- N is odd
- closest meshnodes are $x_L = 1/2 h/2$, $x_R = 1/2 + h/2$

Then

$$\|y - \tilde{v}\|_{1,(0,1)}^2 \ge \int_{x_L}^{x_R} (y' - \tilde{v}')^2 dx \ge \min_{\alpha} \int_{x_L}^{x_R} (y' - \alpha)^2 dx.$$

Discontinuity of y' at 1/2 yields that

$$\begin{split} \min_{\alpha} \int_{x_L}^{x_R} (y' - \alpha)^2 \ dx &\geq Ch + O(h^2) \\ \Rightarrow \ \|y - \tilde{v}\|_{1,(0,1)} &\geq Ch^{1/2}. \end{split}$$

In the domain $\Omega \subset \mathbb{R}^2$ with smooth boundary S consider the equation

$$Lu \equiv -\frac{\partial}{\partial x_i} a_{ij} \frac{\partial u}{\partial x_j} + b_i \frac{\partial u}{\partial x_i} + au = f$$
(4)

with one type of boundary conditions

$$u\big|_{S}=0, \tag{5}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\left(\frac{\partial u}{\partial N} + \sigma u\right)\Big|_{S} = 0.$$
(6)

Conditions on the data:

- coefficients b_1 , b_2 , a and right-hand side f are bounded piecewise smooth functons
- coefficients a_{ij} have discontinuities along smooth closed curve $\Gamma\subset \Omega$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- a_{ij} are bounded and continuous on Ω_1 (bounded by Γ) and $\Omega_2 = \Omega \setminus \overline{\Omega}_1$
- $\frac{\partial a_{ij}}{\partial x_k}$ are bounded and piecewise smooth on Ω_1 and Ω_2

For the problem (4), (5) or (4), (6) we require on the curve Γ

$$[u]|_{\Gamma} = 0, \quad \left[\frac{\partial u}{\partial N}\right]|_{\Gamma} = 0, \tag{7}$$

うして ふゆう ふほう ふほう うらつ

where

$$\left[\frac{\partial u}{\partial N}\right]\Big|_{\Gamma} = a_{ij}^{+}\frac{\partial u^{+}}{\partial x_{i}}\cos(\nu, x_{j}) - a_{ij}^{-}\frac{\partial u^{-}}{\partial x_{i}}\cos(\nu, x_{j})$$

Classical solution satisfies

- $u(x) \in C(\overline{\Omega}) \cap C^1(\Omega_i), i = 1, 2$
- $u(x) \in C^{2}(\Omega_{i}), i = 1, 2$
- Lu = f on $\Omega_1 \cup \Omega_2$

Define generalized solution for (4), (5), (7) with $f \in L^2(\Omega)$: $u \in H^1_0(\Omega)$ satisfies

$$L_{\Omega}(u,\varphi) = \int_{\Omega} \left[a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + b_i \frac{\partial u}{\partial x_i} \varphi + au\varphi \right] \, d\Omega = \int_{\Omega} f\varphi \, d\Omega$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for any $\varphi \in H_0^1(\Omega)$.

Define generalized solution for (4), (5), (7) with $f \in L^2(\Omega)$: $u \in H^1_0(\Omega)$ satisfies

$$L_{\Omega}(u,\varphi) = \int_{\Omega} \left[a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + b_i \frac{\partial u}{\partial x_i} \varphi + au\varphi \right] d\Omega = \int_{\Omega} f\varphi \ d\Omega$$

for any $\varphi \in H_0^1(\Omega)$. If $u \in H^2(\Omega_i)$, i = 1, 2, then (integrating by parts) $\int_{\Omega} (Lu - f)\varphi \ d\Omega + \int_{\Gamma} \varphi \Big[\frac{\partial u}{\partial N} \Big] \ ds = 0,$

hence

$$Lu = f,$$
$$\left[\frac{\partial u}{\partial N}\right]\Big|_{\Gamma} = 0.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Again consider in $\Omega \subset \mathbb{R}^2$ the equation

$$Lu \equiv -\frac{\partial}{\partial x_i}a_{ij}\frac{\partial u}{\partial x_j} + b_i\frac{\partial u}{\partial x_i} + au = f$$

with 1st, 3rd types of BC, or

$$u\big|_{S_1} = 0, \quad \left(\frac{\partial u}{\partial N} + \sigma u\right)\Big|_{S_2} = 0,$$
 (8)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $S = S_1 \cup S_2$. Coefficients and RHS of the equation satisfy regularity conditions (A). But for mixed BC (8) in general $u \notin H^2(\Omega)$.

Generalized solution for mixed BC: $u \in H^1_{S_1}(\Omega)$ satisfies

$$\begin{split} L_{\Omega,S_2}(u,\varphi) &\equiv \int_{\Omega} \left[a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + b_i \frac{\partial u}{\partial x_i} \varphi + au\varphi \right] \, d\Omega + \int_{S_2} \sigma u\varphi \, ds = (f,\varphi)_{\Omega} \end{split}$$
for any $\varphi \in H^1_{S_1}(\Omega).$

◆□ > < 個 > < E > < E > E の < @</p>

Consider ω – the sector of unit circle with angle β , and corresponding Dirichlet problem for Poisson equation:

$$-\bigtriangleup u = f, \quad u\big|_{S} = 0. \tag{9}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Function

$$\Psi = \zeta(r)r^{\lambda}\sin\lambda heta$$

is a generalized solution of (9), where $\lambda = \pi/\beta$ and $\zeta = \begin{cases} 1, & 0 \le r \le 1/3 \\ 0, & 2/3 \le r \le 1 \end{cases}$ is monotone and smooth. One can verify that $\Psi \in H_0^1(\omega)$.

Using

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2},$$

one can show that $\triangle \Psi \in L^2(\omega)$. Notice that

$$\|\Psi\|_{2,\omega}^2 \ge \int_{\omega} \left(\frac{\partial^2 \Psi}{\partial r^2}\right)^2 r \, dr \, d\theta \ge \int_0^{1/2} \int_0^{\beta} \lambda^2 (\lambda-1)^2 r^{2\lambda-3} \sin^2 \lambda \theta \, dr \, d\theta.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

When $\pi < \beta < 2\pi$, we have $1/2 < \lambda < 1$ and $\Psi \notin H^2(\omega)$.

Using

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2},$$

one can show that $\triangle \Psi \in L^2(\omega)$. Notice that

$$\|\Psi\|_{2,\omega}^2 \ge \int_{\omega} \left(\frac{\partial^2 \Psi}{\partial r^2}\right)^2 r \, dr \, d\theta \ge \int_0^{1/2} \int_0^{\beta} \lambda^2 (\lambda-1)^2 r^{2\lambda-3} \sin^2 \lambda \theta \, dr \, d\theta.$$

When $\pi < \beta < 2\pi$, we have $1/2 < \lambda < 1$ and $\Psi \notin H^2(\omega)$.

Singular points on the boundary:

- corner points with inner angles $\pi < \beta < 2\pi$
- points of switching the boundary condition: $\overline{S}_1 \cap \overline{S}_2$

Theorem

Any solution of the stated problem with $f \in L^2(\Omega)$ can be expressed as

$$u=\sum_j\gamma_j\Psi_j+w,$$

where $w \in H^2(\Omega)$, γ_j are constant, $\Psi_j \in H^1(\Omega)$ are independent of f and

1. $L\Psi_j \in L^2(\Omega)$

- 2. each singular point generates one or two functions Ψ_j ; if BC is not switched, then exactly one function Ψ_j
- 3. Ψ_j is non-zero only near the corresponding singular point

4. $\Psi_j|_{S_1} = 0$

In addition,

$$\sum_{j} |\gamma_j| + \|w\|_{2,\Omega} \leq C \|f\|_{0,\Omega}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Exact representation of Ψ_j : find u

$$-\bigtriangleup u = 0 \text{ in } \omega$$

 $u(r,0) = u(r,\beta) = 0$

in the form $u = r^{\mu} \Phi(\theta)$. We have

$$\frac{d^2\Phi}{d\theta^2} + \mu^2\Phi = 0.$$

Since $\Phi(0) = \Phi(\beta) = 0$, non-trivial solution exists for $\mu_n = n\lambda$ $(\lambda = \pi/\beta)$:

$$\Phi_n = \sin n\lambda\theta, \quad n = 1, 2, \dots$$

$$\Rightarrow u_n = r^{n\lambda}\sin n\lambda\theta.$$

Since $u_n(r,\theta) \in H^2(\omega)$ (n > 1), but $u_1(r,\theta) \notin H^2(\omega)$, a singular function has a form

$$\Psi = \zeta(r)u_1(r,\theta) = \zeta(r)r^{\lambda}\sin\lambda\theta.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

2D problem with piecewise smooth boundary Other cases of BC:

1.
$$\frac{\partial u}{\partial n}\Big|_{\theta=0} = \frac{\partial u}{\partial n}\Big|_{\theta=\beta} = 0, \ \pi < \beta < 2\pi$$

 $\Rightarrow \Psi = \zeta(r)r^{\lambda}\cos\lambda\theta, \quad \lambda = \pi/\beta$
2. $\frac{\partial u}{\partial n}\Big|_{\theta=0} = u\Big|_{\theta=\beta} = 0, \ \pi/2 < \beta < 2\pi$
 $\Rightarrow \Psi_1 = \zeta(r)r^{\lambda_1}\cos\lambda_1\theta, \quad \lambda_1 = \pi/2\beta \quad \text{for } \pi/2 < \beta \le 3\pi/2$
and also
 $\Psi_2 = \zeta(r)r^{\lambda_2}\cos\lambda_2\theta, \quad \lambda_2 = 3\pi/2\beta \quad \text{for } 3\pi/2 < \beta < 2\pi$

3.
$$u\Big|_{\theta=0} = \frac{\partial u}{\partial n}\Big|_{\theta=\beta} = 0, \ \pi/2 < \beta < 2\pi$$

 $\Rightarrow \Psi_1 = \zeta(r)r^{\lambda_1}\sin\lambda_1\theta, \quad \lambda_1 = \pi/2\beta \quad \text{for } \pi/2 < \beta \le 3\pi/2$

and also

$$\Psi_2 = \zeta(r)r^{\lambda_2}\sin\lambda_2\theta, \quad \lambda_2 = 3\pi/2\beta \quad \text{for } 3\pi/2 < \beta < 2\pi$$

Defining singular functions for general operator L with piecewise linear boundary around corner points:

1. change of variables

$$\eta_1 = x_1 + \mu x_2, \quad \eta_2 = \nu x_2$$

to obtain $ilde{L}=- riangle_\eta+ ilde{b}_jrac{\partial}{\partial\eta_{m i}}+ ilde{a}$

2. for sufficiently small $\varepsilon > 0$ the example of singular function is (in polar coordinates (ρ, κ))

$$\Psi = \zeta(
ho/arepsilon)
ho^\lambda \sin\lambda\kappa$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Arising singularity functions depend only on

- coefficients a_{ij} for 2nd derivatives at intersection points
- angles between discontinuity curve and jointed parts of the boundary

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Arising singularity functions depend only on

ς

• coefficients a_{ii} for 2nd derivatives at intersection points

 angles between discontinuity curve and jointed parts of the boundary Model problem:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\begin{cases} a^{+} \triangle u^{+} = f^{+} & \text{in } \Omega_{+} \\ a^{-} \triangle u^{-} = f^{-} & \text{in } \Omega_{-} \\ u|_{S} = 0 \\ u^{+}|_{x_{2}=0} = u^{-}|_{x_{2}=0}, \quad a^{+} \frac{\partial u^{+}}{\partial n^{+}}|_{x_{2}=0} = a^{-} \frac{\partial u^{-}}{\partial n^{+}}|_{x_{2}=0} \end{cases}$$

where $u = \begin{cases} u^{+} \text{ in } \Omega_{+}, \\ u^{-} \text{ in } \Omega_{-}, \end{cases} f = \begin{cases} f^{+} \text{ in } \Omega_{+}, \\ f^{-} \text{ in } \Omega_{-}, \end{cases}, \quad \Omega_{-} = \Omega \setminus \overline{\Omega}_{+}, \end{cases}$
 $\Omega_{+} \cap \Omega_{-} \subset \{x : x_{2} = 0\}. \end{cases}$

Theorem

In the given problem for any $f \in L^2(\Omega)$ there exists a generalized solution $u \in H_0^1(\Omega)$ which can be written as

$$u=\sum_j\gamma_j\Psi_j+w,$$

where $\Psi_j \in H^1(\Omega)$ are independent of f, $w \in B^2(\Omega)$, $a^+ \triangle \Psi_j \in L^2(\Omega_+)$, $a^- \triangle \Psi_j \in L^2(\Omega_-)$. Number of Ψ_j is not greater than 2.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Determining the functions Ψ_i :

solve the homogeneous problem in polar coordinates in the form

$$u = r^{\mu} \Phi(\theta)$$
, where $\Phi(\theta) = egin{cases} \Phi^+(heta), & 0 < heta < eta_+, \ \Phi^-(heta), & -eta_- < heta < 0. \end{cases}$

Boundary conditions:

$$u^+(r,\beta_+) = u^-(r,-\beta_-) = 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The state equation reads as

$$a(heta)\Phi''(heta) + a(heta)\mu^2\Phi(heta) = 0,$$

where $a(heta) = \begin{cases} a^+, & 0 < heta < eta_+, \\ a^-, & -eta_- < heta < 0. \end{cases}$

Due to BC $\Phi^+(\beta_+) = \Phi^-(-\beta_-) = 0$ we obtain

$$\Phi^+ = C_+ \sin \mu (\beta_+ - \theta), \quad \Phi^- = C_- \sin \mu (\beta_- + \theta).$$

Compatibility conditions yield that

$$C_+ \sin \mu \beta_+ = C_- \sin \mu \beta_-$$
$$-a^+ C_+ \mu \cos \mu \beta_+ = a^- C_- \mu \cos \mu \beta_-.$$

This system has a non-trivial solution wrt C_+ , C_- , if the determinant

$$D(\mu)\equiv a^-\mu\sin\mueta_+\cos\mueta_-+a^+\mu\sin\mueta_-\cos\mueta_+=0.$$

One can show that the equation has at most two solutions on (0, 1). Finally,

$$\Psi_j(r, heta) = \zeta(r)r^{\mu_j} egin{cases} \sin\mu_j(eta_+ - heta), & 0 < heta < eta_+, \ \sin\mu_j(eta_- + heta), & -eta_- < heta < 0, \end{cases}$$

where $0 < \mu_j < 1$ are roots of $D(\mu)$.

・ロト ・ 理 ・ モ ・ モ ・ モ ・ シック

Table of Contents

BVP with different sources of singularities

Model example in 1D First type of singularities Second type of singularities Third type of singularities

Numerical schemes and their accuracy

Loss of accuracy in the standard method Numerical methods without loss of convergence order

うして ふゆう ふほう ふほう うらつ

Appendix

Accuracy of variational schemes for piecewise smooth boundary

Consider piecewise linear approximations on nonregular mesh.

Let a singular point on $\partial\Omega$ be the origin, and corresp. singular function $\Psi = \zeta(r/\varepsilon)r^{\lambda}\sin\lambda\theta$, $0 < \lambda < 1$. Then solution in this neighborhood has a form $u = \gamma\Psi + w$, $w \in H^2(\Omega)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Accuracy of variational schemes for piecewise smooth boundary

Consider piecewise linear approximations on nonregular mesh.

Let a singular point on $\partial\Omega$ be the origin, and corresp. singular function $\Psi = \zeta(r/\varepsilon)r^{\lambda}\sin\lambda\theta$, $0 < \lambda < 1$. Then solution in this neighborhood has a form $u = \gamma\Psi + w$, $w \in H^2(\Omega)$.

Consider a triangle \triangle from the mesh lying at a distance O(h) from the origin. For approximate solution \tilde{v}

$$\begin{split} \|u - \tilde{v}\|_{1,\Omega} &\geq \|\gamma \Psi + w - \tilde{v}\|_{1,\triangle} \geq \|\gamma \Psi + \tilde{w} - \tilde{v}\|_{1,\triangle} - \|w - \tilde{w}\|_{1,\triangle} \\ &\geq \min_{\tilde{\phi} \in V_{h}} |\gamma| \|\Psi - \tilde{\phi}\|_{1,\triangle} - \|w - \tilde{w}\|_{1,\triangle}. \end{split}$$

Since $\nabla \tilde{\phi}$ is constant on riangle,

$$\|\gamma \Psi + w - ilde{
u}\|_{1, riangle} \ge |\gamma| \min_{ec{s} \in \mathbb{R}^2} \left\|
abla \Psi - ec{s}
ight\|_{0, riangle} - \|w - ilde{w}\|_{1, riangle}.$$

Accuracy of variational schemes for piecewise smooth boundary

Assume that origin is one of triangle vertices. Then (see Appendix)

$$\min_{\vec{a}\in\mathbb{R}^2}\left\|\nabla\Psi-\vec{a}\right\|_{0,\bigtriangleup}\geq Ch^{\lambda}.$$

Since $\|w - \tilde{w}\|_{1, \triangle} \leq Ch$, for $\gamma \neq 0$ and sufficiently small h an upper bound

$$\|u-\tilde{v}\|_{1,\Omega}\geq Ch^{\lambda}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

holds.

Consider elliptic problems with smooth boundary S and pure 1st or 3rd type of BC. Here the curve of discontinuity Γ is closed and smooth, $\Gamma \cap S = \emptyset$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Consider elliptic problems with smooth boundary S and pure 1st or 3rd type of BC. Here the curve of discontinuity Γ is closed and smooth, $\Gamma \cap S = \emptyset$.

We build the mesh Ω^h_{ex} for piecewise linear approximations using non-regular triangulations, s.t.

 $\exists \Gamma^h \subset \Omega_2$ constructed of the sides of the triangles,

$$dist(\Gamma^h,\Gamma)=O(h^2).$$

Note that

$$\|u - \tilde{v}\|_{1,\Omega} \leq C \|u - \tilde{u}\|_{1,\Omega_{ex}^{h}},$$

where \tilde{u} is a nodal interpolant of $u \in B^2(\Omega)$. Denote by Ω_1^h the area bounded by the curve Γ^h . Approximation property:

$$\|u - \tilde{u}\|_{1,\Omega^{h}_{ex} \setminus \Omega^{h}_{1}} \leq Ch \|u\|_{2,\Omega_{2}}.$$

Denote by u_1 the continuation of u from Ω_1 to Ω_2 , s.t. $u_1 \in H^2(\Omega)$. Note that

$$\begin{split} \|u - \tilde{u}\|_{1,\Omega_{1}^{h}} &\leq \|u - u_{1}\|_{1,\Omega_{1}^{h}} + \|u_{1} - \tilde{u}_{1}\|_{1,\Omega_{1}^{h}} + \|\tilde{u}_{1} - \tilde{u}\|_{1,\Omega_{1}^{h}}.\\ \text{Evidently, } \|u - u_{1}\|_{1,\Omega_{1}^{h}} &= \|u - u_{1}\|_{1,\Omega_{1}^{h}\setminus\Omega_{1}}.\\ \Omega_{1}^{h} \setminus \Omega_{1} \text{ is a strip of width } O(h^{2}). \text{ Then due to a corresp. theorem} \\ \|u - u_{1}\|_{1,\Omega_{1}^{h}\setminus\Omega_{1}} &\leq Ch\|u - u_{1}\|_{2,\Omega_{2}} \\ &\leq Ch(\|u\|_{2,\Omega_{2}} + \|u_{1}\|_{2,\Omega_{2}}) \leq Ch(\|u\|_{2,\Omega_{2}} + \|u\|_{2,\Omega_{1}}). \end{split}$$

Estimating other two terms, we obtain

$$\begin{split} \|u_{1} - \tilde{u}_{1}\|_{1,\Omega_{1}^{h}} &\leq Ch \|u\|_{2,\Omega_{1}}, \\ \|\tilde{u}_{1} - \tilde{u}\|_{1,\Omega_{1}^{h}} &\leq Ch (\|u\|_{2,\Omega_{1}} + \|u\|_{2,\Omega_{2}}). \end{split}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Summarizing, one derives

$$\|u-\tilde{u}\|_{1,\Omega^h_{\mathrm{ex}}} \leq Ch(\|u\|_{2,\Omega_1} + \|u\|_{2,\Omega_2}),$$

hence

$$\|u - \tilde{v}\|_{1,\Omega} \leq Ch(\|u\|_{2,\Omega_1} + \|u\|_{2,\Omega_2}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variational schemes with additive selection of singular functions

Assume that domain Ω has two corner points on S with angles $\beta_j > \pi$. Then solution can be written as

$$u = \gamma_1 \Psi_1 + \gamma_2 \Psi_2 + w.$$

Approximate solution for the regular mesh $\Omega_{e_X}^h$ we will seek in the form

$$\mathbf{v} = \kappa_1 \Psi_1 + \kappa_2 \Psi_2 + \tilde{\mathbf{p}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where \tilde{p} is a piecewise linear function from V_h .

Variational schemes with additive selection of singular functions

Assume that domain Ω has two corner points on S with angles $\beta_j > \pi$. Then solution can be written as

$$u = \gamma_1 \Psi_1 + \gamma_2 \Psi_2 + w.$$

Approximate solution for the regular mesh Ω_{ex}^h we will seek in the form

$$\mathbf{v} = \kappa_1 \Psi_1 + \kappa_2 \Psi_2 + \tilde{p}_2$$

where \tilde{p} is a piecewise linear function from V_h . We seek v as a solution of the integral identity

$$L_{\Omega,S}(v,\phi)=(f,\phi)_{\Omega}$$

for any $\phi = \mu_1 \Psi_1 + \mu_2 \Psi_2 + \tilde{\theta}$, $\tilde{\theta} \in V_h$.

In this case Galerkin system contains basis functions of V_h and Ψ_1 , Ψ_2 . The following estimate holds:

$$\|u-v\|_{1,\Omega} \leq C \min_{\phi} \|u-\phi\|_{1,\Omega},$$

うして ふゆう ふほう ふほう うらつ

Variational schemes with additive selection of singular functions

Taking $\phi = \gamma_1 \Psi_1 + \gamma_2 \Psi_2 + \tilde{w}$, where \tilde{w} is a nodal interpolant of w, we obtain

$$\|u-v\|_{1,\Omega}\leq C\|w-\tilde{w}\|_{1,\Omega}.$$

Results of approximation theorem in 2D:

$$\begin{split} \|w - \tilde{w}\|_{1,\Omega} &\leq Ch \|w\|_{2,\Omega}, \\ \|w - \tilde{w}\|_{0,\Omega} &\leq Ch^2 \|w\|_{2,\Omega} \end{split}$$

together with the inequality $\sum\limits_j |\gamma_j| + \|w\|_{2,\Omega} \leq C \|f\|_{0,\Omega}$ yield

$$\begin{aligned} \|u-v\|_{1,\Omega} &\leq \tilde{C}h\|f\|_{0,\Omega}, \\ \|u-v\|_{0,\Omega} &\leq \tilde{C}h^2\|f\|_{0,\Omega}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Matrix L of the system

$$L_{\Omega,S}(v, \Psi_1) = (f, \Psi_1)_{\Omega},$$

$$L_{\Omega,S}(v, \Psi_2) = (f, \Psi_2)_{\Omega},$$

$$L_{\Omega,S}(v, \phi_{k_i}) = (f, \phi_{k_i})_{\Omega}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is dense at 1st and 2nd rows.

Matrix L of the system

$$L_{\Omega,S}(v, \Psi_1) = (f, \Psi_1)_{\Omega},$$

$$L_{\Omega,S}(v, \Psi_2) = (f, \Psi_2)_{\Omega},$$

$$L_{\Omega,S}(v, \phi_{k_i}) = (f, \phi_{k_i})_{\Omega}.$$

is dense at 1st and 2nd rows.

We apply orthogonal factorization:

$$v = \tilde{w}_0 + k_1 w_1 + k_2 w_2,$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $L_{\Omega,S}(w_1, \tilde{w}_0) = L_{\Omega,S}(w_2, \tilde{w}_0) = L_{\Omega,S}(w_2, w_1) = 0.$

Let $w_1 \equiv \Psi_1 - \widetilde{q}_1$, where $\widetilde{q}_1 \in V_h$ solves the equation

$$L_{\Omega,S}(\Psi_1 - \tilde{q}_1, \tilde{\theta}) = 0 \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any $\tilde{\theta} \in V_h$.

Let
$$w_1 \equiv \Psi_1 - \tilde{q}_1$$
, where $\tilde{q}_1 \in V_h$ solves the equation
 $L_{\Omega,S}(\Psi_1 - \tilde{q}_1, \tilde{\theta}) = 0$ (10)

for any $\tilde{\theta} \in V_h$.

Then define $w_2 \equiv \Psi_2 + \mu w_1 - \tilde{q}_2$, s.t.

$$L_{\Omega,S}(\tilde{q}_2,\tilde{\theta}) = L_{\Omega,S}(\Psi_2,\tilde{\theta})$$
(11)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for any $ilde{ heta} \in V_h$, and

$$\mu = -\frac{L_{\Omega,S}(\Psi_2 - \tilde{q}_2, w_1)}{L_{\Omega,S}(w_1, w_1)}$$

to satisfy $L_{\Omega,S}(w_2, w_1) = 0$.

3rd equation is to find $\tilde{w}_0 \in V_h$:

$$L_{\Omega,S}(\tilde{w}_0,\tilde{\theta}) = (f,\tilde{\theta})_{\Omega}$$
(12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any $\tilde{\theta} \in V_h$. Coefficients k_1 , k_2 can be found from the expressions

$$k_{1} = \frac{(f, w_{1})_{\Omega} - L_{\Omega,S}(\tilde{w}_{0}, w_{1})}{L_{\Omega,S}(w_{1}, w_{1})},$$
$$k_{2} = \frac{(f, w_{2})_{\Omega} - L_{\Omega,S}(\tilde{w}_{0}, w_{2}) - k_{1}L_{\Omega,S}(w_{1}, w_{2})}{L_{\Omega,S}(w_{2}, w_{2})}$$

Assembling matrices for (10), (11), (12) requires the computation of $L_{\Omega,S}(\Psi, \Psi)$, $L_{\Omega,S}(\Psi, \phi_{k_i})$, $(f, \Psi)_{\Omega}$.

On the mesh triangles in the neighborhood of the corner points one has to evaluate the integrals of the form

$$\int_{\Delta} \alpha \Big(\frac{\partial \Psi}{\partial x_1} \Big)^{i_1} \Big(\frac{\partial \Psi}{\partial x_2} \Big)^{i_2} \, d\Omega,$$

where α is a linear function, $1 \le i_1 + i_2 \le 2$. Since in the polar coordinates $\Psi = \zeta(r)r^{\lambda} \cos \lambda \theta$, this double integrals reduce to multiple integrals of the terms as

$$r^{\nu}\cos^{m_{1}}\lambda\theta\sin^{m_{2}}\lambda\theta\cos^{n_{1}}\theta\sin^{n_{2}}\theta.$$

Table of Contents

BVP with different sources of singularities

Model example in 1D First type of singularities Second type of singularities Third type of singularities

Numerical schemes and their accuracy

Loss of accuracy in the standard method Numerical methods without loss of convergence order

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Appendix

Now we prove that

$$\min_{\vec{a}\in\mathbb{R}^2} \left\|\nabla\Psi-\vec{a}\right\|_{0,\bigtriangleup}\geq Ch^{\lambda},$$

where $\Psi = \zeta(r/\varepsilon)r^{\lambda} \sin \lambda \theta$, $0 < \lambda < 1$. Note that for sufficiently small h > 0 we have $\Psi = r^{\lambda} \sin \lambda \theta$. Differentiating the function $\left\| \nabla \Psi - \vec{a} \right\|_{0, \bigtriangleup}^2$ w.r.t. \vec{a} , one obtains the minimum for

$$\vec{a}_* = \frac{1}{\int_{\bigtriangleup} 1 \, dx} \Big(\int_{\bigtriangleup} \frac{\partial \Psi}{\partial x_1} \, dx, \int_{\bigtriangleup} \frac{\partial \Psi}{\partial x_2} \, dx \Big).$$

Further we use the relations

$$\frac{\partial \Psi}{\partial x_1} = \cos \theta \frac{\partial \Psi}{\partial r} - \frac{1}{r} \sin \theta \frac{\partial \Psi}{\partial \theta},\\ \frac{\partial \Psi}{\partial x_2} = \sin \theta \frac{\partial \Psi}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial \Psi}{\partial \theta}.$$

ション ふゆ アメリア メリア しょうくの

For convenience we will also consider circle sectors $\sigma \subset \Delta \subset \overline{\sigma}$. Then

$$\int_{\bar{\sigma}} F(x) \, dx \geq \int_{\Delta} F(x) \, dx \geq \int_{\sigma} F(x) \, dx$$

for any $F(x) \ge 0$ and, switching to polar coordinates, we have

$$\int_{\sigma} F(x) dx = \int_{0}^{ch} dr \int_{\theta_{1}}^{\theta_{2}} d\theta \, rF(r,\theta), \ \int_{\bar{\sigma}} F(x) \, dx = \int_{0}^{\bar{c}h} dr \int_{\theta_{1}}^{\theta_{2}} d\theta \, rF(r,\theta).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

for some $0 < c < \overline{c}$.

For convenience we will also consider circle sectors $\sigma \subset \Delta \subset \overline{\sigma}$. Then

$$\int_{\bar{\sigma}} F(x) \, dx \geq \int_{\Delta} F(x) \, dx \geq \int_{\sigma} F(x) \, dx$$

for any $F(x) \ge 0$ and, switching to polar coordinates, we have

$$\int_{\sigma} F(x) dx = \int_{0}^{ch} dr \int_{\theta_{1}}^{\theta_{2}} d\theta \, rF(r,\theta), \, \int_{\bar{\sigma}} F(x) \, dx = \int_{0}^{\bar{c}h} dr \int_{\theta_{1}}^{\theta_{2}} d\theta \, rF(r,\theta).$$

for some $0 < c < \overline{c}$.

Expressions for $\frac{\partial \Psi}{\partial x_1}$, $\frac{\partial \Psi}{\partial x_2}$ allow us to estimate

$$\left|\int_{\Delta} \frac{\partial \Psi}{\partial x_1} \, dx\right| \leq \int_{\bar{\sigma}} \left|\frac{\partial \Psi}{\partial x_1}\right| \, dx \leq C^0_{\bar{\sigma}} \int_0^{ch} r^{\lambda} \, dr \leq C_{\bar{\sigma}} \, h^{\lambda+1},$$

ション ふゆ アメリア メリア しょうくの

as well as for $\frac{\partial \Psi}{\partial x_2}$.

Taking into account that $\int_{\triangle} 1 \ dx = O(h^2)$, last inequality means: $|\vec{a}_*| = O(h^{\lambda-1})$.

Expressions for $\frac{\partial \Psi}{\partial x_1}$, $\frac{\partial \Psi}{\partial x_2}$, which can be expressed as $G_i(\theta)r^{\lambda-1}$, i = 1, 2 with certain trigonometric functions $G_i(\theta)$, also yield that on a fixed circle sector $\sigma_1 \subset \sigma$ (with polar angles $\theta \in (\theta_1, \theta_2)$ away from the roots of $G_i(\theta)$ and radius $\underline{c}h$ for some $0 < \underline{c} < c$) the estimates

$$\left|\frac{\partial\Psi}{\partial x_{1}}\right|\geq c_{0}r^{\lambda-1},\left|\frac{\partial\Psi}{\partial x_{2}}\right|\geq c_{0}r^{\lambda-1}$$

hold.

Then due to the estimate for $|\vec{a}_*|$ one can choose such a circle sector $\sigma_2 \subset \sigma_1$ (with radius αh for some $\alpha > 0$) that for a given $c_1 < c_0$:

$$\left|
abla \Psi - ec{a}_*
ight|_2 \geq c_1 r^{\lambda - 1}.$$

Finally, we obtain

$$\begin{split} \left\| \nabla \Psi - \vec{a}_* \right\|_{0,\Delta}^2 &\geq \left\| \nabla \Psi - \vec{a}_* \right\|_{0,\sigma_2}^2 \\ &= \int_0^{\alpha h} dr \int_{\theta_1}^{\theta_2} d\theta \, r \Big| \nabla \Psi - \vec{a}_* \Big|_2^2 \\ &\geq \int_0^{\alpha h} dr \int_{\theta_1}^{\theta_2} d\theta \, r c_1^2 r^{2\lambda - 2} \geq c_3 \int_0^{\alpha h} r^{2\lambda - 1} \, dr = C^2 h^{2\lambda}, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

which proves the required lower estimate for $\left\| \nabla \Psi - \vec{a}_* \right\|_{0, \bigtriangleup}$.