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Motivating example

One-dimensional BVP:

—(ay') =f, x€(0,1),
y(0)=y(1)=0
where

e a > ap > 0 with discontinuity at x =¢ (0< &< 1)
e right-hand side f is piecewise smooth.



Motivating example

Thence we reformulate the problem: state equation

—(ay) =f, 0<x<€and¢é<x<1,
y(0)=y(1)=0

and continuity conditions

lim y(x)= lim y(x),

x—£—0 x—£+0
lim ay’ = lim ay
x—£—0 y x—£4+0 v

or, briefly,
[y]ng =0, [ay/]ng =0.



Motivating example

Even for smooth right-hand side f, usually the solution y ¢ H?((0,1)).
Example

Let£=1/2,f =1, a:{
Then the solution is

2
. JTZ+%X, 1 0§x§1/2.

2, 0<x<1/2
1, 1/2<x<1

One can see y € H((0,1)), but y ¢ H?((0,1))
(since y’ is discontinuous).



Motivating example

Multiply the equation
—(ay’) =f, 0<x<&andé<x<1,

((0,1)) and integrate on (0,1). Then
,€) an

by an arbitrary function ¢ € H, ) a
d (£,1) and jump condition from

H1
0
using integration by parts on (0

(2), we deduce
1 1
'¢" dx = | f¢ dx. 3
/anqb x /0 ¢ dx (3)

The converse statement is also true: if y € H3((0,1)) satisfies (3) for any
¢ € H3((0,1)), then it satisfies the system (1) and the conditions (2).

(0
§) a



Variational numerical scheme in 1D

We focus on the variational solution y of the problem (3). Consider a
variational scheme based on piecewise linear approximations and
corresponding order of approximation.

Also consider on (0,1) a regular mesh x; = ih, i=1,...,N, h=1/N.
Approximate solution 7 € Vj, C H3((0,1)) satisfies the integral equation

1 1
/av’é' dx:/ fé dx
0 0

for any ¢ € V.

For the approximation error (y — ¥) we have an estimate

ly = ¥ll1,0,1) < Clly — ¥ll1,00,2)5

where ¥ is a nodal interpolant of y(x).



Variational numerical scheme in 1D

When the point of discontinuity £ coincides with one meshnode, the
terms of

ly =513 01) =y =713 0y + Iy = 7113 e

are estimated above by Ch?[|y|3 () and CH?[ly |3 ¢ -
As a result,

lly — ‘7||1,(o,1) = O(h).



Variational numerical scheme in 1D

When there is no meshnode in O(h?)-neighborhood of singular point ¢:
e for simplicity £ =1/2
e N is odd
e closest meshnodes are x, = 1/2 — h/2, xg = 1/2+ h/2
Then
XR XR
Iy =#l3 0 2 [ 0/ =9 dxzmin [/ - a)? o

XL XL
Discontinuity of y’ at 1/2 yields that

min/ (y' — a)? dx > Ch+ O(h?)

XL

= [y = V1,01 > Ch'/2,



2D problem with discontinuous coefficients

In the domain Q C R? with smooth boundary S consider the equation

0 Ou ou B
LU:*aiXiauaixjﬁ’b,ai)qﬂ‘au—f (4)

with one type of boundary conditions

u}s =0, (5)

—0. (6)
S

(on + )



2D problem with discontinuous coefficients

Conditions on the data:

e coefficients by, by, a and right-hand side f are bounded piecewise
smooth functons

o coefficients aj; have discontinuities along smooth closed curve I' C Q

e a;; are bounded and continuous on ; (bounded by ') and
H=0\M

ajj

° 0,
Eixk

are bounded and piecewise smooth on € and €,



2D problem with discontinuous coefficients

For the problem (4), (5) or (4), (6) we require on the curve I’

ou
[u]|r =0, an =0, (7)
=0 [5wl],
where
[@] = £cos(l/ xj) — _Ju” cos(v, x;).
ONI|- % 0x; ) % Ox; !

Classical solution satisfies
e u(x) € C(ANCHQ), i=1,2
e u(x) e C3(Q), i=1,2
o lu=fonQUQ



2D problem with discontinuous coefficients

Define generalized solution for (4), (5), (7) with f € L2(Q): u € H}(Q)
satisfies

du 0 du
Lo(u, @) = /{a,laj 84'0 +b8 gp—i—augp} dQ:/chp dQ

for any ¢ € H3(Q).



2D problem with discontinuous coefficients

Define generalized solution for (4), (5), (7) with f € L2(Q): u € H}(Q)
satisfies

du 0 du
Lo(u, @) = /{3”85 890 +b8 gp—l—augp dQ /f(p dQ

for any ¢ € H3(Q).
If ue H?(Q;), i =1,2, then (integrating by parts)

/Q(Lu— o dQ+/ AR

hence

Lu=f,

k!




2D problem with piecewise smooth boundary

Again consider in Q C R? the equation

4 au+b;@+au:f

L = ——34ajj—
“ 8x,~ajc9xj ox;

with 1st, 3rd types of BC, or

ou
”‘51 =0, (aw+UU> . =0, (8)
where S = 51 U 52.
Coefficients and RHS of the equation satisfy regularity conditions (A).
But for mixed BC (8) in general u ¢ H?(Q).



2D problem with piecewise smooth boundary

Generalized solution for mixed BC: u € Hg () satisfies

ou 0 ou
Los,(u,p) = /[aUag 680 + b; % <p+aug0] dQJr/ oup ds =

S2

for any ¢ € HE (Q).

(f,9)a



2D problem with piecewise smooth boundary

Consider w — the sector of unit circle with angle 3, and corresponding
Dirichlet problem for Poisson equation:

—Au=f, ul;=0. (9)

S

Function
W =((r)r*sin A0
is a generalized solution of (9), where A = 7/ and
)1, 0<r<1/3
¢= 0, 2/3<r<1
One can verify that W € H}(w).

is monotone and smooth.



2D problem with piecewise smooth boundary

Using

2o 100 10
ar2  rdr  r2o6%’
one can show that AW € [?(w).

Notice that

o 1/2
W[5 _/<W> rdr d9>/ / M\ —1)2r23sin? M0 dr db.

When 7 < 3 < 27, we have 1/2 < A < 1 and ¥ ¢ H?(w).

Au =



2D problem with piecewise smooth boundary

Using

2o 100 10
ar2  rdr  r2o6%’
one can show that AW € [?(w).

Notice that

o 1/2
W[5 _/<W> rdr d9>/ / M\ —1)2r23sin? M0 dr db.

When 7 < 3 < 27, we have 1/2 < A < 1 and ¥ ¢ H?(w).

Au =

Singular points on the boundary:
e corner points with inner angles 7 < 8 < 27
e points of switching the boundary condition: S; NS,



2D problem with piecewise smooth boundary

Theorem
Any solution of the stated problem with f € L?(Q) can be expressed as

U:Z’Yjwj+w7
J

where w € H?(R), ~; are constant, W; € H(Q) are independent of f and

1. Ly e L2(Q)
2. each singular point generates one or two functions W;; if BC is not
switched, then exactly one function V;
3. V; is non-zero only near the corresponding singular point
4. W;lg =0
In addition,
Z Vil + [[wllz.e < Cl[fllo.-

J



2D problem with piecewise smooth boundary
Exact representation of W;: find u

—Au=0inw
u(r,0) =u(r,5)=0

in the form u = r*®(0).
We have 2
¢ >
—_— ¢ =0.
402 + 1 0
Since ®(0) = ¢(8) = 0, non-trivial solution exists for i, = n\

A=mn/B):
$,=sinn\0, n=1,2,...

= u, = r" sinn)\.

Since u,(r,0) € H*(w) (n> 1), but uy(r,0) ¢ H*(w), a singular function
has a form
W = ((r)ui(r,0) = {(r)r* sin A0.



2D problem with piecewise smooth boundary
Other cases of BC:

Ou _ du —
= V=((rr*cosN, \=x/p
.%070:u|925:0,w/2<ﬂ<27r

= Yy =((r)rMtcos b, M\ =n/23 form/2< B <3m/2
and also

Wy = ((r)r*2cos Ao, Ap =3m/28 for3m/2< B <2nm

=0,1/2<pB<2
s T/2<pB<2rm

3. ”|0:o = %

= Y =((r)rMsin\0, M\ =n/28 form/2< B <3n/2
and also

Wy = ((r)r*2sin\af, o =3m/23 for3mw/2< B <2n



2D problem with piecewise smooth boundary

Defining singular functions for general operator L with piecewise linear
boundary around corner points:

1. change of variables
M= X1+ pxz, T2 = UX2

to obtain L = —A,, + INJJ-B%, +3a
J

2. for sufficiently small £ > 0 the example of singular function is (in
polar coordinates (p, ))

W = ((p/e)p* sin Ak



Singularities for intersection of discontinuity curve with
boundary

Avrising singularity functions depend only on
e coefficients aj; for 2nd derivatives at intersection points

e angles between discontinuity curve and jointed parts of the boundary



Singularities for intersection of discontinuity curve with
boundary

Avrising singularity functions depend only on

e coefficients aj; for 2nd derivatives at intersection points

e angles between discontinuity curve and jointed parts of the boundary
Model problem:

atAut =fT  inQy
aAu=f" inQ_

u|S =0
-+ - - + out _ ,—O0u”
u |><2:0 =u |><2:07 " on+ x2=0 =3 Gnt x2=0
+ +
ut in Q ftinQ —
where u = o = Pl =0\qQ,,
u~in Q_, f~inQ_,

Q. NQ_ C{x: xx=0}.



Singularities for intersection of discontinuity curve with
boundary

Theorem

In the given problem for any f € L?(Q) there exists a generalized solution
u € H3(Q) which can be written as

U:Z’yj\lfj—kw,
J

where W; € HY(Q) are independent of f, w € B%(Q), at AV; € L2(Qy),
a~AV; € [2(Q_). Number of V; is not greater than 2.



Singularities for intersection of discontinuity curve with
boundary

Determining the functions W;:
solve the homogeneous problem in polar coordinates in the form

¢F(9), 0<0<py,

u = r*®(0), where ®(0) = {q)(g) —f_<0<0.

Boundary conditions:

ut(r,fs) =u(r,—p-) =0.
The state equation reads as

a(0)®"(0) + a(f) 2 d () = 0,

at

0
S LT



Singularities for intersection of discontinuity curve with

boundary
Due to BC 1 (3,) = &~ (—S-) = 0 we obtain

ot = Cpsinp(By —0), & = C_sinu(B- +90).
Compatibility conditions yield that
Cosinufy = C_sinufS_
—a"CypcospuBy =a C_pcosuf_.
This system has a non-trivial solution wrt C,, C_, if the determinant
D(p) = a~ psin By cospuf_ + atpsinuB_ cosuBy = 0.

One can show that the equation has at most two solutions on (0, 1).
Finally,

sinp (B —0), 0<6<py,

binay = {sinuj(ﬁ +6)., —p-<0<0,

where 0 < pij < 1 are roots of D(p).
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Accuracy of variational schemes for piecewise smooth
boundary

Consider piecewise linear approximations on nonregular mesh.

Let a singular point on 9 be the origin, and corresp. singular function
W = ((r/e)r*sin A, 0 < A < 1. Then solution in this neighborhood has
aform u=~V +w, w € H3(Q).



Accuracy of variational schemes for piecewise smooth
boundary

Consider piecewise linear approximations on nonregular mesh.

Let a singular point on 9 be the origin, and corresp. singular function
W = ((r/e)r*sin A, 0 < A < 1. Then solution in this neighborhood has
aform u=~V +w, we H*(Q).

Consider a triangle A from the mesh lying at a distance O(h) from the
origin. For approximate solution ¥

lu=Vlo =z W+w—VliaZ[W+W—V]La—lw—w[1a

> min [V = dllia — lw — W[|1,a-
PEV)

Since V(;NS is constant on A,

¥ +w=laa = | min [V =3~ W= @sa.

)



Accuracy of variational schemes for piecewise smooth
boundary

Assume that origin is one of triangle vertices. Then (see Appendix)

min
3ER?

AT 5” > Ch.

)

Since ||w — W|1,a < Ch, for v # 0 and sufficiently small h an upper
bound
lu— V)10 > Ch*

holds.



Variational schemes for problems with discontinuous
coefficients
Consider elliptic problems with smooth boundary S and pure 1st or 3rd

type of BC. Here the curve of discontinuity I is closed and smooth,
rMs=wo.



Variational schemes for problems with discontinuous
coefficients

Consider elliptic problems with smooth boundary S and pure 1st or 3rd
type of BC. Here the curve of discontinuity I is closed and smooth,
rMs=o.

We build the mesh Qf_ for piecewise linear approximations using
non-regular triangulations, s.t.

Ir" c Q, constructed of the sides of the triangles,
dist(T", 1) = O(h?).

Note that
Ju=Vllre < Cllu— G|y on ,

where 1 is a nodal interpolant of u € B2(Q).
Denote by QF the area bounded by the curve I'". Approximation property:

lu—ll,op st < Chllullag:



Variational schemes for problems with discontinuous
coefficients

Denote by u; the continuation of u from Q; to Q,, s.t. u; € H3(Q).
Note that

lu = @lly gp < llu— uslly gp + llux = Gally gp + 11 = Bl gp-

Evidently,

lu— U1||1,Q{' = [lu— U1||1,Q{-\Ql-
QP \ Q; is a strip of width O(h?). Then due to a corresp. theorem

lu— il gh\q, < Chllu— w20,

< Ch(llull2,0, + lu1ll2,0.) < Ch(|lull2,0, + [lull2,9,)-
Estimating other two terms, we obtain

lun = Tnlly op < Chijull2,0:,

[tn = @l gp < Ch([[ull2.0, + [lull2,0,)-



Variational schemes for problems with discontinuous
coefficients

Summarizing, one derives
lu— 0l < Ch(llullz.a, + ull20.),

hence
|u—Vlli,e < Ch([|ull2,0, + [lu

2792)'



Variational schemes with additive selection of singular

functions

Assume that domain Q has two corner points on S with angles §; > .
Then solution can be written as

u=yVi+ 7V, +w.
Approximate solution for the regular mesh Qf we will seek in the form
v =r1V1 + koo + p,

where p is a piecewise linear function from Vj,.



Variational schemes with additive selection of singular

functions

Assume that domain Q has two corner points on S with angles §; > .
Then solution can be written as

u=yVi+ 7V, +w.
Approximate solution for the regular mesh Qf we will seek in the form
v =r1V1 + koo + p,

where p is a piecewise linear function from Vj,.
We seek v as a solution of the integral identity

LQ,S(V7¢) = (fa ¢)Q
for any ¢ = 1 V1 + uaVo + g, 0¢cV,.
In this case Galerkin system contains basis functions of V}, and Wy, V.

The following estimate holds:

lu=vire < Cminflu = ¢ll1,0,



Variational schemes with additive selection of singular
functions

Taking ¢ = v1V1 + vV, + W, where W is a nodal interpolant of w, we
obtain
[u—=vlia < Cllw = w0

Results of approximation theorem in 2D:

w —wllLa < Chlwl2q,

Iw— Wlog < CH w0

together with the inequality > |vj| + [|w|l2,0 < C||flo,q yield
j

Ju—vlLa < Chl|fllo.,
lu—vlo.a < Ch?|If|loq.



Solution of Galerkin system with singular basis functions

Matrix L of the system

LQ,S(val) = (f7w1)97
LQ,S(Va\U2) = (f7w2)97
Lo.s(v,dk) = (f, di;)a-

is dense at 1st and 2nd rows.



Solution of Galerkin system with singular basis functions

Matrix L of the system

LQ,S(val) = (fvwl)Qv
LQ,S(Va\I}2) = (f,\lfg)Q,
LQ,S(Va(bki) = (f)¢/<i)9'

is dense at 1st and 2nd rows.

We apply orthogonal factorization:
v =g + kiwy + kaws,

where Lo s(wi, o) = Lo s(ws, p) = Lo s(w, wy) = 0.



Solution of Galerkin system with singular basis functions

Let wy = V1 — §1, where §; € V}, solves the equation

Los(Vi—:1,0)=0 (10)

for any 6 € V.



Let wy = V1 — §1, where §; € V}, solves the equation

Los(V1—§:1,0)=0

for any 6 € V.
Then define wo = V) + uwy — §o, s.t.

Lo s(G2,0) = La,s(V2,0)

for any 6 € V,, and

_ Los(V2— G, m)
Lo s(wi, w1)

to satisfy Lo s(wa,wy) = 0.

Solution of Galerkin system with singular basis functions



Solution of Galerkin system with singular basis functions

3rd equation is to find vig € Vj:
Lo, s(io,0) = (f,0)a (12)

for any 0 € V.
Coefficients ki, ko can be found from the expressions

(f,w)a — La,s(Wo, wr)
Lo,s(wi, wr)

ki =

(f,wo)a — Lo s(Wo, wo) — kilg s(wi, w»)
Lo, s(wa, wo)

ko =



Solution of Galerkin system with singular basis functions

Assembling matrices for (10), (11), (12) requires the computation of
Los(V,V), Las(V, o), (f,V)a.

On the mesh triangles in the neighborhood of the corner points one has
to evaluate the integrals of the form

A AN WA AN
/Aa(a*xl) (5) @
where « is a linear function, 1 < j; + i < 2.

Since in the polar coordinates W = ((r)r* cos A, this double integrals
reduce to multiple integrals of the terms as

r” cos™ \0sin™ X0 cos™ @sin™ 0.
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Appendix

Now we prove that

min
3cR?

AT 3” > Ch,
0,

where W = ((r/e)r*sin A0, 0 < X\ < 1.
Note that for sufficiently small h > 0 we have W = r*sin \§.

2
Differentiating the function HV\II — é’HO . w.r.t. &, one obtains the

minimum for

5 ;( o o [V dx)
*_fAldX AaX]_ ’ A@Xz '
Further we use the relations
a—w *cosﬂa—w lsinﬁa—w
Ox1 or r 09’
ov ov 1 ov

a—)@ = snnGE + ;cosew.



Appendix

For convenience we will also consider circle sectors 0 C A C &. Then

/5 F(x) dx > /A F(x) dx > /g F(x) dx

for any F(x) > 0 and, switching to polar coordinates, we have

ch 02 ch 02
/F(x) dx:/ dr/ d9rF(r,9),/F(x) dx:/ dr/ dorF(r,0).
o 0 01 I 0 01

forsome 0 < ¢ < C.



Appendix

For convenience we will also consider circle sectors 0 C A C &. Then

/5 F(x) dx > /A F(x) dx > /g F(x) dx

for any F(x) > 0 and, switching to polar coordinates, we have

ch 02 ch 02
/F(x) dx:/ dr/ d9rF(r,9),/F(x) dx:/ dr/ dorF(r,0).
o 0 01 I 0 01

forsome 0 < ¢ < C.

6\Il 6\IJ

Expressions for allow us to estimate

/5)x1d‘<

as well as for g—"’
X2

ov

Ox1

ch
dx < CO/ ™ dr < Ca L,
0




Appendix

Taking into account that [, 1 dx = O(h?), last inequality means:
|3.| = O(h*71).
oV v

Expressions for D b which can be expressed as G,-(G)rAfl, i=1,2
with certain trigonometric functions G;(#), also yield that on a fixed
circle sector o1 C o (with polar angles 6 € (61, 62) away from the roots
of G;(#) and radius ch for some 0 < ¢ < c) the estimates

ov A—1
— >
aXl = CQor

ov A-1
— >
’ ’8)@‘ =

hold.

Then due to the estimate for |3,| one can choose such a circle sector
o2 C o1 (with radius ah for some o > 0) that for a given ¢; < co:

A—1

’V\U—g* 2 cr
2




Appendix

Finally, we obtain

2
vafa

ah 92
:/ w/ werfa
0 61

ah 6> ah
> / dr/ do rc12r2)‘*2 > C3/ P~ dr = C?2h%,
0 0, 0

VvV — 3,

2
szwfa
0,A

0,02

2
2

which proves the required lower estimate for

)
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