Singular basis functions

Nadir Bayramov

Seminar on Numerical Analysis
7 January, 2014

Table of Contents

BVP with different sources of singularities
Model example in 1D
First type of singularities
Second type of singularities
Third type of singularities

Numerical schemes and their accuracy
Loss of accuracy in the standard method
Numerical methods without loss of convergence order

Appendix

Motivating example

One-dimensional BVP:

$$
\begin{aligned}
-\left(a y^{\prime}\right)^{\prime} & =f, \quad x \in(0,1), \\
y(0) & =y(1)=0
\end{aligned}
$$

where

- $a \geq a_{0}>0$ with discontinuity at $x=\xi \quad(0<\xi<1)$
- right-hand side f is piecewise smooth.

Motivating example

Thence we reformulate the problem: state equation

$$
\begin{align*}
-\left(a y^{\prime}\right)^{\prime} & =f, \quad 0<x<\xi \text { and } \xi<x<1, \tag{1}\\
y(0) & =y(1)=0
\end{align*}
$$

and continuity conditions

$$
\begin{aligned}
& \lim _{x \rightarrow \xi-0} y(x)=\lim _{x \rightarrow \xi+0} y(x), \\
& \lim _{x \rightarrow \xi-0} a y^{\prime}=\lim _{x \rightarrow \xi+0} a y^{\prime},
\end{aligned}
$$

or, briefly,

$$
\begin{equation*}
[y]_{x=\xi}=0, \quad\left[a y^{\prime}\right]_{x=\xi}=0 \tag{2}
\end{equation*}
$$

Motivating example

Even for smooth right-hand side f, usually the solution $y \notin H^{2}((0,1))$.
Example
Let $\xi=1 / 2, f \equiv 1, a=\left\{\begin{array}{ll}2, & 0 \leq x \leq 1 / 2 \\ 1, & 1 / 2<x \leq 1\end{array}\right.$.
Then the solution is

$$
y=\left\{\begin{array}{ll}
-\frac{x^{2}}{4}+\frac{7}{24} x, & 0 \leq x \leq 1 / 2 \\
-\frac{x^{2}}{2}+\frac{7}{12} x-\frac{1}{12}, & 1 / 2<x \leq 1
\end{array} .\right.
$$

One can see $y \in H^{1}((0,1))$, but $y \notin H^{2}((0,1))$ (since y^{\prime} is discontinuous).

Motivating example

Multiply the equation

$$
-\left(a y^{\prime}\right)^{\prime}=f, \quad 0<x<\xi \text { and } \xi<x<1,
$$

by an arbitrary function $\phi \in H_{0}^{1}((0,1))$ and integrate on $(0,1)$. Then using integration by parts on $(0, \xi)$ and $(\xi, 1)$ and jump condition from (2), we deduce

$$
\begin{equation*}
\int_{0}^{1} a y^{\prime} \phi^{\prime} d x=\int_{0}^{1} f \phi d x \tag{3}
\end{equation*}
$$

The converse statement is also true: if $y \in H_{0}^{1}((0,1))$ satisfies (3) for any $\phi \in H_{0}^{1}((0,1))$, then it satisfies the system (1) and the conditions (2).

Variational numerical scheme in 1D

We focus on the variational solution y of the problem (3). Consider a variational scheme based on piecewise linear approximations and corresponding order of approximation.
Also consider on $(0,1)$ a regular mesh $x_{i}=i h, i=1, \ldots, N, h=1 / N$. Approximate solution $\tilde{v} \in V_{h} \subset H_{0}^{1}((0,1))$ satisfies the integral equation

$$
\int_{0}^{1} a \tilde{v}^{\prime} \tilde{\phi}^{\prime} d x=\int_{0}^{1} f \tilde{\phi} d x
$$

for any $\tilde{\phi} \in V_{h}$.
For the approximation error $(y-\tilde{v})$ we have an estimate

$$
\|y-\tilde{v}\|_{1,(0,1)} \leq C\|y-\tilde{y}\|_{1,(0,1)}
$$

where \tilde{y} is a nodal interpolant of $y(x)$.

Variational numerical scheme in 1D

When the point of discontinuity ξ coincides with one meshnode, the terms of

$$
\|y-\tilde{y}\|_{1,(0,1)}^{2}=\|y-\tilde{y}\|_{1,(0, \xi)}^{2}+\|y-\tilde{y}\|_{1,(\xi, 1)}^{2}
$$

are estimated above by $C h^{2}\|y\|_{2,(0, \xi)}^{2}$ and $C h^{2}\|y\|_{2,(\xi, 1)}^{2}$.
As a result,

$$
\|y-\tilde{v}\|_{1,(0,1)}=O(h) .
$$

Variational numerical scheme in 1D

When there is no meshnode in $O\left(h^{2}\right)$-neighborhood of singular point ξ :

- for simplicity $\xi=1 / 2$
- N is odd
- closest meshnodes are $x_{L}=1 / 2-h / 2, x_{R}=1 / 2+h / 2$

Then

$$
\|y-\tilde{v}\|_{1,(0,1)}^{2} \geq \int_{x_{L}}^{x_{R}}\left(y^{\prime}-\tilde{v}^{\prime}\right)^{2} d x \geq \min _{\alpha} \int_{x_{L}}^{x_{R}}\left(y^{\prime}-\alpha\right)^{2} d x .
$$

Discontinuity of y^{\prime} at $1 / 2$ yields that

$$
\begin{aligned}
& \min _{\alpha} \int_{x_{L}}^{x_{R}}\left(y^{\prime}-\alpha\right)^{2} d x \geq C h+O\left(h^{2}\right) \\
& \Rightarrow\|y-\tilde{v}\|_{1,(0,1)} \geq C h^{1 / 2}
\end{aligned}
$$

2D problem with discontinuous coefficients

In the domain $\Omega \subset \mathbb{R}^{2}$ with smooth boundary S consider the equation

$$
\begin{equation*}
L u \equiv-\frac{\partial}{\partial x_{i}} a_{i j} \frac{\partial u}{\partial x_{j}}+b_{i} \frac{\partial u}{\partial x_{i}}+a u=f \tag{4}
\end{equation*}
$$

with one type of boundary conditions

$$
\begin{gather*}
\left.u\right|_{S}=0 \tag{5}\\
\left.\left(\frac{\partial u}{\partial N}+\sigma u\right)\right|_{S}=0 \tag{6}
\end{gather*}
$$

2D problem with discontinuous coefficients

Conditions on the data:

- coefficients b_{1}, b_{2}, a and right-hand side f are bounded piecewise smooth functons
- coefficients $a_{i j}$ have discontinuities along smooth closed curve $\Gamma \subset \Omega$
- $a_{i j}$ are bounded and continuous on Ω_{1} (bounded by Γ) and $\Omega_{2}=\Omega \backslash \bar{\Omega}_{1}$
- $\frac{\partial a_{i j}}{\partial x_{k}}$ are bounded and piecewise smooth on Ω_{1} and Ω_{2}

2D problem with discontinuous coefficients

For the problem (4), (5) or (4), (6) we require on the curve Γ

$$
\begin{equation*}
\left.[u]\right|_{\Gamma}=0,\left.\quad\left[\frac{\partial u}{\partial N}\right]\right|_{\Gamma}=0, \tag{7}
\end{equation*}
$$

where

$$
\left.\left[\frac{\partial u}{\partial N}\right]\right|_{\Gamma}=a_{i j}^{+} \frac{\partial u^{+}}{\partial x_{i}} \cos \left(\nu, x_{j}\right)-a_{i j}^{-} \frac{\partial u^{-}}{\partial x_{i}} \cos \left(\nu, x_{j}\right) .
$$

Classical solution satisfies

- $u(x) \in C(\bar{\Omega}) \cap C^{1}\left(\Omega_{i}\right), i=1,2$
- $u(x) \in C^{2}\left(\Omega_{i}\right), i=1,2$
- $L u=f$ on $\Omega_{1} \cup \Omega_{2}$

2D problem with discontinuous coefficients

Define generalized solution for (4), (5), (7) with $f \in L^{2}(\Omega): u \in H_{0}^{1}(\Omega)$ satisfies

$$
L_{\Omega}(u, \varphi)=\int_{\Omega}\left[a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}+b_{i} \frac{\partial u}{\partial x_{i}} \varphi+a u \varphi\right] d \Omega=\int_{\Omega} f \varphi d \Omega
$$

for any $\varphi \in H_{0}^{1}(\Omega)$.

2D problem with discontinuous coefficients

Define generalized solution for (4), (5), (7) with $f \in L^{2}(\Omega): u \in H_{0}^{1}(\Omega)$ satisfies

$$
L_{\Omega}(u, \varphi)=\int_{\Omega}\left[a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}+b_{i} \frac{\partial u}{\partial x_{i}} \varphi+a u \varphi\right] d \Omega=\int_{\Omega} f \varphi d \Omega
$$

for any $\varphi \in H_{0}^{1}(\Omega)$.
If $u \in H^{2}\left(\Omega_{i}\right), i=1,2$, then (integrating by parts)

$$
\int_{\Omega}(L u-f) \varphi d \Omega+\int_{\Gamma} \varphi\left[\frac{\partial u}{\partial N}\right] d s=0
$$

hence

$$
\begin{aligned}
& L u=f, \\
& {\left.\left[\frac{\partial u}{\partial N}\right]\right|_{\Gamma}=0 .}
\end{aligned}
$$

2D problem with piecewise smooth boundary

Again consider in $\Omega \subset \mathbb{R}^{2}$ the equation

$$
L u \equiv-\frac{\partial}{\partial x_{i}} a_{i j} \frac{\partial u}{\partial x_{j}}+b_{i} \frac{\partial u}{\partial x_{i}}+a u=f
$$

with 1st, 3rd types of $B C$, or

$$
\begin{equation*}
\left.u\right|_{S_{1}}=0,\left.\quad\left(\frac{\partial u}{\partial N}+\sigma u\right)\right|_{S_{2}}=0 \tag{8}
\end{equation*}
$$

where $S=S_{1} \cup S_{2}$.
Coefficients and RHS of the equation satisfy regularity conditions (A). But for mixed BC (8) in general $u \notin H^{2}(\Omega)$.

2D problem with piecewise smooth boundary

Generalized solution for mixed $B C: u \in H_{S_{1}}^{1}(\Omega)$ satisfies
$L_{\Omega, S_{2}}(u, \varphi) \equiv \int_{\Omega}\left[a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{j}}+b_{i} \frac{\partial u}{\partial x_{i}} \varphi+a u \varphi\right] d \Omega+\int_{S_{2}} \sigma u \varphi d s=(f, \varphi)_{\Omega}$ for any $\varphi \in H_{S_{1}}^{1}(\Omega)$.

2D problem with piecewise smooth boundary

Consider ω - the sector of unit circle with angle β, and corresponding Dirichlet problem for Poisson equation:

$$
\begin{equation*}
-\Delta u=f,\left.\quad u\right|_{S}=0 \tag{9}
\end{equation*}
$$

Function

$$
\Psi=\zeta(r) r^{\lambda} \sin \lambda \theta
$$

is a generalized solution of (9), where $\lambda=\pi / \beta$ and
$\zeta=\left\{\begin{array}{ll}1, & 0 \leq r \leq 1 / 3 \\ 0, & 2 / 3 \leq r \leq 1\end{array}\right.$ is monotone and smooth.
One can verify that $\psi \in H_{0}^{1}(\omega)$.

2D problem with piecewise smooth boundary

Using

$$
\triangle u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

one can show that $\Delta \Psi \in L^{2}(\omega)$.
Notice that
$\|\Psi\|_{2, \omega}^{2} \geq \int_{\omega}\left(\frac{\partial^{2} \Psi}{\partial r^{2}}\right)^{2} r d r d \theta \geq \int_{0}^{1 / 2} \int_{0}^{\beta} \lambda^{2}(\lambda-1)^{2} r^{2 \lambda-3} \sin ^{2} \lambda \theta d r d \theta$.
When $\pi<\beta<2 \pi$, we have $1 / 2<\lambda<1$ and $\Psi \notin H^{2}(\omega)$.

2D problem with piecewise smooth boundary

Using

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}},
$$

one can show that $\Delta \Psi \in L^{2}(\omega)$.
Notice that
$\|\Psi\|_{2, \omega}^{2} \geq \int_{\omega}\left(\frac{\partial^{2} \Psi}{\partial r^{2}}\right)^{2} r d r d \theta \geq \int_{0}^{1 / 2} \int_{0}^{\beta} \lambda^{2}(\lambda-1)^{2} r^{2 \lambda-3} \sin ^{2} \lambda \theta d r d \theta$.
When $\pi<\beta<2 \pi$, we have $1 / 2<\lambda<1$ and $\Psi \notin H^{2}(\omega)$.
Singular points on the boundary:

- corner points with inner angles $\pi<\beta<2 \pi$
- points of switching the boundary condition: $\bar{S}_{1} \cap \bar{S}_{2}$

2D problem with piecewise smooth boundary

Theorem

Any solution of the stated problem with $f \in L^{2}(\Omega)$ can be expressed as

$$
u=\sum_{j} \gamma_{j} \Psi_{j}+w
$$

where $w \in H^{2}(\Omega), \gamma_{j}$ are constant, $\Psi_{j} \in H^{1}(\Omega)$ are independent of f and

1. $L \Psi_{j} \in L^{2}(\Omega)$
2. each singular point generates one or two functions Ψ_{j}; if $B C$ is not switched, then exactly one function Ψ_{j}
3. Ψ_{j} is non-zero only near the corresponding singular point
4. $\left.\Psi_{j}\right|_{S_{1}}=0$

In addition,

$$
\sum_{j}\left|\gamma_{j}\right|+\|w\|_{2, \Omega} \leq C\|f\|_{0, \Omega} .
$$

2D problem with piecewise smooth boundary

Exact representation of Ψ_{j} : find u

$$
\begin{aligned}
-\triangle u & =0 \text { in } \omega \\
u(r, 0) & =u(r, \beta)=0
\end{aligned}
$$

in the form $u=r^{\mu} \Phi(\theta)$.
We have

$$
\frac{d^{2} \Phi}{d \theta^{2}}+\mu^{2} \Phi=0
$$

Since $\Phi(0)=\Phi(\beta)=0$, non-trivial solution exists for $\mu_{n}=n \lambda$ $(\lambda=\pi / \beta)$:

$$
\begin{aligned}
& \Phi_{n}=\sin n \lambda \theta, \quad n=1,2, \ldots \\
& \Rightarrow \quad u_{n}=r^{n \lambda} \sin n \lambda \theta
\end{aligned}
$$

Since $u_{n}(r, \theta) \in H^{2}(\omega)(n>1)$, but $u_{1}(r, \theta) \notin H^{2}(\omega)$, a singular function has a form

$$
\Psi=\zeta(r) u_{1}(r, \theta)=\zeta(r) r^{\lambda} \sin \lambda \theta
$$

2D problem with piecewise smooth boundary Other cases of BC:

1. $\left.\frac{\partial u}{\partial n}\right|_{\theta=0}=\left.\frac{\partial u}{\partial n}\right|_{\theta=\beta}=0, \pi<\beta<2 \pi$

$$
\Rightarrow \Psi=\zeta(r) r^{\lambda} \cos \lambda \theta, \quad \lambda=\pi / \beta
$$

2. $\left.\frac{\partial u}{\partial n}\right|_{\theta=0}=\left.u\right|_{\theta=\beta}=0, \pi / 2<\beta<2 \pi$

$$
\Rightarrow \Psi_{1}=\zeta(r) r^{\lambda_{1}} \cos \lambda_{1} \theta, \quad \lambda_{1}=\pi / 2 \beta \quad \text { for } \pi / 2<\beta \leq 3 \pi / 2
$$

and also

$$
\Psi_{2}=\zeta(r) r^{\lambda_{2}} \cos \lambda_{2} \theta, \quad \lambda_{2}=3 \pi / 2 \beta \quad \text { for } 3 \pi / 2<\beta<2 \pi
$$

3. $\left.u\right|_{\theta=0}=\left.\frac{\partial u}{\partial n}\right|_{\theta=\beta}=0, \pi / 2<\beta<2 \pi$

$$
\Rightarrow \Psi_{1}=\zeta(r) r^{\lambda_{1}} \sin \lambda_{1} \theta, \quad \lambda_{1}=\pi / 2 \beta \quad \text { for } \pi / 2<\beta \leq 3 \pi / 2
$$

and also

$$
\Psi_{2}=\zeta(r) r^{\lambda_{2}} \sin \lambda_{2} \theta, \quad \lambda_{2}=3 \pi / 2 \beta \quad \text { for } 3 \pi / 2<\beta<2 \pi
$$

2D problem with piecewise smooth boundary

Defining singular functions for general operator L with piecewise linear boundary around corner points:

1. change of variables

$$
\eta_{1}=x_{1}+\mu x_{2}, \quad \eta_{2}=\nu x_{2}
$$

to obtain $\tilde{L}=-\triangle_{\eta}+\tilde{b}_{j} \frac{\partial}{\partial \eta_{j}}+\tilde{a}$
2. for sufficiently small $\varepsilon>0$ the example of singular function is (in polar coordinates (ρ, κ))

$$
\Psi=\zeta(\rho / \varepsilon) \rho^{\lambda} \sin \lambda \kappa
$$

Singularities for intersection of discontinuity curve with boundary

Arising singularity functions depend only on

- coefficients $a_{i j}$ for 2nd derivatives at intersection points
- angles between discontinuity curve and jointed parts of the boundary

Singularities for intersection of discontinuity curve with boundary

Arising singularity functions depend only on

- coefficients $a_{i j}$ for 2nd derivatives at intersection points
- angles between discontinuity curve and jointed parts of the boundary Model problem:

$$
\left\{\begin{array}{l}
a^{+} \triangle u^{+}=f^{+} \quad \text { in } \Omega_{+} \\
a^{-} \triangle u^{-}=f^{-} \quad \text { in } \Omega_{-} \\
\left.u\right|_{S}=0 \\
\left.u^{+}\right|_{x_{\mathbf{2}}=0}=\left.u^{-}\right|_{x_{\mathbf{2}}=0},\left.\quad a^{+} \frac{\partial u^{+}}{\partial n^{+}}\right|_{x_{\mathbf{2}}=0}=\left.a^{-} \frac{\partial u^{-}}{\partial n^{+}}\right|_{x_{\mathbf{2}}=0}
\end{array}\right.
$$

where $u=\left\{\begin{array}{l}u^{+} \text {in } \Omega_{+}, \\ u^{-} \text {in } \Omega_{-},\end{array} \quad f=\left\{\begin{array}{l}f^{+} \text {in } \Omega_{+}, \\ f^{-} \text {in } \Omega_{-},\end{array} \quad, \Omega_{-}=\Omega \backslash \bar{\Omega}_{+}\right.\right.$,
$\Omega_{+} \cap \Omega_{-} \subset\left\{x: x_{2}=0\right\}$.

Singularities for intersection of discontinuity curve with boundary

Theorem
In the given problem for any $f \in L^{2}(\Omega)$ there exists a generalized solution $u \in H_{0}^{1}(\Omega)$ which can be written as

$$
u=\sum_{j} \gamma_{j} \Psi_{j}+w
$$

where $\psi_{j} \in H^{1}(\Omega)$ are independent of $f, w \in B^{2}(\Omega)$, $a^{+} \triangle \Psi_{j} \in L^{2}\left(\Omega_{+}\right)$, $a^{-} \triangle \Psi_{j} \in L^{2}\left(\Omega_{-}\right)$. Number of Ψ_{j} is not greater than 2 .

Singularities for intersection of discontinuity curve with boundary

Determining the functions Ψ_{j} : solve the homogeneous problem in polar coordinates in the form $u=r^{\mu} \Phi(\theta)$, where $\Phi(\theta)= \begin{cases}\Phi^{+}(\theta), & 0<\theta<\beta_{+}, \\ \Phi^{-}(\theta), & -\beta_{-}<\theta<0 .\end{cases}$
Boundary conditions:

$$
u^{+}\left(r, \beta_{+}\right)=u^{-}\left(r,-\beta_{-}\right)=0 .
$$

The state equation reads as

$$
a(\theta) \Phi^{\prime \prime}(\theta)+a(\theta) \mu^{2} \Phi(\theta)=0
$$

where $a(\theta)= \begin{cases}a^{+}, & 0<\theta<\beta_{+}, \\ a^{-}, & -\beta_{-}<\theta<0 .\end{cases}$

Singularities for intersection of discontinuity curve with boundary

Due to $\operatorname{BC} \Phi^{+}\left(\beta_{+}\right)=\Phi^{-}\left(-\beta_{-}\right)=0$ we obtain

$$
\Phi^{+}=C_{+} \sin \mu\left(\beta_{+}-\theta\right), \quad \Phi^{-}=C_{-} \sin \mu\left(\beta_{-}+\theta\right)
$$

Compatibility conditions yield that

$$
\begin{aligned}
C_{+} \sin \mu \beta_{+} & =C_{-} \sin \mu \beta_{-} \\
-a^{+} C_{+} \mu \cos \mu \beta_{+} & =a^{-} C_{-} \mu \cos \mu \beta_{-}
\end{aligned}
$$

This system has a non-trivial solution wrt C_{+}, C_{-}, if the determinant

$$
D(\mu) \equiv a^{-} \mu \sin \mu \beta_{+} \cos \mu \beta_{-}+a^{+} \mu \sin \mu \beta_{-} \cos \mu \beta_{+}=0
$$

One can show that the equation has at most two solutions on $(0,1)$. Finally,

$$
\Psi_{j}(r, \theta)=\zeta(r) r^{\mu_{j}} \begin{cases}\sin \mu_{j}\left(\beta_{+}-\theta\right), & 0<\theta<\beta_{+} \\ \sin \mu_{j}\left(\beta_{-}+\theta\right), & -\beta_{-}<\theta<0\end{cases}
$$

where $0<\mu_{j}<1$ are roots of $D(\mu)$.

Table of Contents

BVP with different sources of singularities
Model example in 1D
First type of singularities
Second type of singularities
Third type of singularities

Numerical schemes and their accuracy
Loss of accuracy in the standard method Numerical methods without loss of convergence order

Appendix

Accuracy of variational schemes for piecewise smooth boundary

Consider piecewise linear approximations on nonregular mesh. Let a singular point on $\partial \Omega$ be the origin, and corresp. singular function $\psi=\zeta(r / \varepsilon) r^{\lambda} \sin \lambda \theta, 0<\lambda<1$. Then solution in this neighborhood has a form $u=\gamma \Psi+w, w \in H^{2}(\Omega)$.

Accuracy of variational schemes for piecewise smooth boundary

Consider piecewise linear approximations on nonregular mesh. Let a singular point on $\partial \Omega$ be the origin, and corresp. singular function $\psi=\zeta(r / \varepsilon) r^{\lambda} \sin \lambda \theta, 0<\lambda<1$. Then solution in this neighborhood has a form $u=\gamma \Psi+w, w \in H^{2}(\Omega)$.
Consider a triangle \triangle from the mesh lying at a distance $O(h)$ from the origin. For approximate solution \tilde{v}

$$
\begin{aligned}
& \|u-\tilde{v}\|_{1, \Omega} \geq\|\gamma \Psi+w-\tilde{v}\|_{1, \Delta} \geq\|\gamma \Psi+\tilde{w}-\tilde{v}\|_{1, \Delta}-\|w-\tilde{w}\|_{1, \Delta} \\
& \geq \min _{\tilde{\phi} \in V_{h}}|\gamma|\|\Psi-\tilde{\phi}\|_{1, \triangle}-\|w-\tilde{w}\|_{1, \triangle}
\end{aligned}
$$

Since $\nabla \tilde{\phi}$ is constant on \triangle,

$$
\|\gamma \Psi+w-\tilde{v}\|_{1, \Delta} \geq|\gamma| \min _{\tilde{a} \in \mathbb{R}^{2}}\|\nabla \Psi-\vec{a}\|_{0, \Delta}-\|w-\tilde{w}\|_{1, \Delta} .
$$

Accuracy of variational schemes for piecewise smooth boundary

Assume that origin is one of triangle vertices. Then (see Appendix)

$$
\min _{\vec{a} \in \mathbb{R}^{2}}\|\nabla \Psi-\vec{a}\|_{0, \Delta} \geq C h^{\lambda} .
$$

Since $\|w-\tilde{w}\|_{1, \Delta} \leq C h$, for $\gamma \neq 0$ and sufficiently small h an upper bound

$$
\|u-\tilde{v}\|_{1, \Omega} \geq C h^{\lambda}
$$

holds.

Variational schemes for problems with discontinuous coefficients

Consider elliptic problems with smooth boundary S and pure 1st or 3rd type of BC . Here the curve of discontinuity Γ is closed and smooth, $\Gamma \cap S=\varnothing$.

Variational schemes for problems with discontinuous coefficients

Consider elliptic problems with smooth boundary S and pure 1st or 3rd type of $B C$. Here the curve of discontinuity Γ is closed and smooth, $\Gamma \cap S=\varnothing$.
We build the mesh $\Omega_{e x}^{h}$ for piecewise linear approximations using non-regular triangulations, s.t.

$$
\exists \Gamma^{h} \subset \Omega_{2} \quad \text { constructed of the sides of the triangles, }
$$

$$
\operatorname{dist}\left(\Gamma^{h}, \Gamma\right)=O\left(h^{2}\right) .
$$

Note that

$$
\|u-\tilde{v}\|_{1, \Omega} \leq C\|u-\tilde{u}\|_{1, \Omega} \Omega_{e x}^{h},
$$

where \tilde{u} is a nodal interpolant of $u \in B^{2}(\Omega)$.
Denote by Ω_{1}^{h} the area bounded by the curve Γ^{h}. Approximation property:

$$
\|u-\tilde{u}\|_{1, \Omega_{e x}^{h} \backslash \Omega_{1}^{h}} \leq C h\|u\|_{2, \Omega_{2}} .
$$

Variational schemes for problems with discontinuous coefficients

Denote by u_{1} the continuation of u from Ω_{1} to Ω_{2}, s.t. $u_{1} \in H^{2}(\Omega)$. Note that

$$
\|u-\tilde{u}\|_{1, \Omega_{1}^{h}} \leq\left\|u-u_{1}\right\|_{1, \Omega_{1}^{h}}+\left\|u_{1}-\tilde{u}_{1}\right\|_{1, \Omega_{1}^{h}}+\left\|\tilde{u}_{1}-\tilde{u}\right\|_{1, \Omega_{1}^{h} .} .
$$

Evidently, $\left\|u-u_{1}\right\|_{1, \Omega_{1}^{h}}=\left\|u-u_{1}\right\|_{1, \Omega_{1}^{h} \backslash \Omega_{1}}$.
$\Omega_{1}^{h} \backslash \Omega_{1}$ is a strip of width $O\left(h^{2}\right)$. Then due to a corresp. theorem

$$
\begin{aligned}
& \left\|u-u_{1}\right\|_{1, \Omega_{1}^{h} \backslash \Omega_{\mathbf{1}}} \leq C h\left\|u-u_{1}\right\|_{2, \Omega_{2}} \\
& \leq C h\left(\|u\|_{2, \Omega_{\mathbf{2}}}+\left\|u_{1}\right\|_{2, \Omega_{\mathbf{2}}}\right) \leq C h\left(\|u\|_{2, \Omega_{\mathbf{2}}}+\|u\|_{2, \Omega_{\mathbf{1}}}\right)
\end{aligned}
$$

Estimating other two terms, we obtain

$$
\begin{aligned}
& \left\|u_{1}-\tilde{u}_{1}\right\|_{1, \Omega_{1}^{h}} \leq C h\|u\|_{2, \Omega_{1}} \\
& \left\|\tilde{u}_{1}-\tilde{u}\right\|_{1, \Omega_{1}^{h}} \leq C h\left(\|u\|_{2, \Omega_{1}}+\|u\|_{2, \Omega_{2}}\right)
\end{aligned}
$$

Variational schemes for problems with discontinuous coefficients

Summarizing, one derives

$$
\|u-\tilde{u}\|_{1, \Omega_{e x}^{h}} \leq C h\left(\|u\|_{2, \Omega_{1}}+\|u\|_{2, \Omega_{2}}\right)
$$

hence

$$
\|u-\tilde{v}\|_{1, \Omega} \leq C h\left(\|u\|_{2, \Omega_{1}}+\|u\|_{2, \Omega_{2}}\right)
$$

Variational schemes with additive selection of singular

 functionsAssume that domain Ω has two corner points on S with angles $\beta_{j}>\pi$. Then solution can be written as

$$
u=\gamma_{1} \Psi_{1}+\gamma_{2} \Psi_{2}+w .
$$

Approximate solution for the regular mesh $\Omega_{e x}^{h}$ we will seek in the form

$$
v=\kappa_{1} \Psi_{1}+\kappa_{2} \Psi_{2}+\tilde{p},
$$

where \tilde{p} is a piecewise linear function from V_{h}.

Variational schemes with additive selection of singular

 functionsAssume that domain Ω has two corner points on S with angles $\beta_{j}>\pi$. Then solution can be written as

$$
u=\gamma_{1} \Psi_{1}+\gamma_{2} \Psi_{2}+w
$$

Approximate solution for the regular mesh $\Omega_{e x}^{h}$ we will seek in the form

$$
v=\kappa_{1} \Psi_{1}+\kappa_{2} \Psi_{2}+\tilde{p},
$$

where \tilde{p} is a piecewise linear function from V_{h}.
We seek v as a solution of the integral identity

$$
L_{\Omega, S}(v, \phi)=(f, \phi)_{\Omega}
$$

for any $\phi=\mu_{1} \Psi_{1}+\mu_{2} \Psi_{2}+\tilde{\theta}, \tilde{\theta} \in V_{h}$.
In this case Galerkin system contains basis functions of V_{h} and Ψ_{1}, Ψ_{2}.
The following estimate holds:

$$
\|u-v\|_{1, \Omega} \leq C \min _{\phi}\|u-\phi\|_{1, \Omega}
$$

Variational schemes with additive selection of singular functions

Taking $\phi=\gamma_{1} \Psi_{1}+\gamma_{2} \Psi_{2}+\tilde{w}$, where \tilde{w} is a nodal interpolant of w, we obtain

$$
\|u-v\|_{1, \Omega} \leq C\|w-\tilde{w}\|_{1, \Omega}
$$

Results of approximation theorem in 2D:

$$
\begin{aligned}
& \|w-\tilde{w}\|_{1, \Omega} \leq C h\|w\|_{2, \Omega} \\
& \|w-\tilde{w}\|_{0, \Omega} \leq C h^{2}\|w\|_{2, \Omega}
\end{aligned}
$$

together with the inequality $\sum_{j}\left|\gamma_{j}\right|+\|w\|_{2, \Omega} \leq C\|f\|_{0, \Omega}$ yield

$$
\begin{aligned}
\|u-v\|_{1, \Omega} & \leq \tilde{C} h\|f\|_{0, \Omega} \\
\|u-v\|_{0, \Omega} & \leq \tilde{C} h^{2}\|f\|_{0, \Omega}
\end{aligned}
$$

Solution of Galerkin system with singular basis functions

Matrix L of the system

$$
\begin{aligned}
& L_{\Omega, S}\left(v, \Psi_{1}\right)=\left(f, \Psi_{1}\right)_{\Omega}, \\
& L_{\Omega, S}\left(v, \Psi_{2}\right)=\left(f, \Psi_{2}\right)_{\Omega}, \\
& L_{\Omega, S}\left(v, \phi_{k_{i}}\right)=\left(f, \phi_{k_{i}}\right)_{\Omega} .
\end{aligned}
$$

is dense at 1st and 2 nd rows.

Solution of Galerkin system with singular basis functions

Matrix L of the system

$$
\begin{aligned}
& L_{\Omega, S}\left(v, \Psi_{1}\right)=\left(f, \Psi_{1}\right)_{\Omega}, \\
& L_{\Omega, S}\left(v, \Psi_{2}\right)=\left(f, \Psi_{2}\right)_{\Omega}, \\
& L_{\Omega, S}\left(v, \phi_{k_{i}}\right)=\left(f, \phi_{k_{i}}\right)_{\Omega} .
\end{aligned}
$$

is dense at 1st and 2nd rows.
We apply orthogonal factorization:

$$
v=\tilde{w}_{0}+k_{1} w_{1}+k_{2} w_{2},
$$

where $L_{\Omega, s}\left(w_{1}, \tilde{w}_{0}\right)=L_{\Omega, s}\left(w_{2}, \tilde{w}_{0}\right)=L_{\Omega, s}\left(w_{2}, w_{1}\right)=0$.

Solution of Galerkin system with singular basis functions

Let $w_{1} \equiv \Psi_{1}-\tilde{q}_{1}$, where $\tilde{q}_{1} \in V_{h}$ solves the equation

$$
\begin{equation*}
L_{\Omega, S}\left(\Psi_{1}-\tilde{q}_{1}, \tilde{\theta}\right)=0 \tag{10}
\end{equation*}
$$

for any $\tilde{\theta} \in V_{h}$.

Solution of Galerkin system with singular basis functions

Let $w_{1} \equiv \Psi_{1}-\tilde{q}_{1}$, where $\tilde{q}_{1} \in V_{h}$ solves the equation

$$
\begin{equation*}
L_{\Omega, s}\left(\Psi_{1}-\tilde{q}_{1}, \tilde{\theta}\right)=0 \tag{10}
\end{equation*}
$$

for any $\tilde{\theta} \in V_{h}$.
Then define $w_{2} \equiv \Psi_{2}+\mu w_{1}-\tilde{q}_{2}$, s.t.

$$
\begin{equation*}
L_{\Omega, S}\left(\tilde{q}_{2}, \tilde{\theta}\right)=L_{\Omega, S}\left(\Psi_{2}, \tilde{\theta}\right) \tag{11}
\end{equation*}
$$

for any $\tilde{\theta} \in V_{h}$, and

$$
\mu=-\frac{L_{\Omega, S}\left(\Psi_{2}-\tilde{q}_{2}, w_{1}\right)}{L_{\Omega, S}\left(w_{1}, w_{1}\right)}
$$

to satisfy $L_{\Omega, s}\left(w_{2}, w_{1}\right)=0$.

Solution of Galerkin system with singular basis functions

3rd equation is to find $\tilde{w}_{0} \in V_{h}$:

$$
\begin{equation*}
L_{\Omega, S}\left(\tilde{w}_{0}, \tilde{\theta}\right)=(f, \tilde{\theta})_{\Omega} \tag{12}
\end{equation*}
$$

for any $\tilde{\theta} \in V_{h}$.
Coefficients k_{1}, k_{2} can be found from the expressions

$$
\begin{gathered}
k_{1}=\frac{\left(f, w_{1}\right)_{\Omega}-L_{\Omega, S}\left(\tilde{w}_{0}, w_{1}\right)}{L_{\Omega, S}\left(w_{1}, w_{1}\right)}, \\
k_{2}=\frac{\left(f, w_{2}\right)_{\Omega}-L_{\Omega, S}\left(\tilde{w}_{0}, w_{2}\right)-k_{1} L_{\Omega, S}\left(w_{1}, w_{2}\right)}{L_{\Omega, S}\left(w_{2}, w_{2}\right)} .
\end{gathered}
$$

Solution of Galerkin system with singular basis functions

Assembling matrices for (10), (11), (12) requires the computation of $L_{\Omega, S}(\Psi, \Psi), L_{\Omega, S}\left(\Psi, \phi_{k_{i}}\right),(f, \Psi)_{\Omega}$.
On the mesh triangles in the neighborhood of the corner points one has to evaluate the integrals of the form

$$
\int_{\triangle} \alpha\left(\frac{\partial \Psi}{\partial x_{1}}\right)^{i_{1}}\left(\frac{\partial \Psi}{\partial x_{2}}\right)^{i_{2}} d \Omega
$$

where α is a linear function, $1 \leq i_{1}+i_{2} \leq 2$.
Since in the polar coordinates $\psi=\zeta(r) r^{\lambda} \cos \lambda \theta$, this double integrals reduce to multiple integrals of the terms as

$$
r^{\nu} \cos ^{m_{1}} \lambda \theta \sin ^{m_{2}} \lambda \theta \cos ^{n_{1}} \theta \sin ^{n_{2}} \theta
$$

Table of Contents

BVP with different sources of singularities
Model example in 1D
First type of singularities
Second type of singularities
Third type of singularities

Numerical schemes and their accuracy
Loss of accuracy in the standard method
Numerical methods without loss of convergence order

Appendix

Appendix

Now we prove that

$$
\min _{\vec{a} \in \mathbb{R}^{2}}\|\nabla \Psi-\vec{a}\|_{0, \triangle} \geq C h^{\lambda}
$$

where $\Psi=\zeta(r / \varepsilon) r^{\lambda} \sin \lambda \theta, 0<\lambda<1$.
Note that for sufficiently small $h>0$ we have $\Psi=r^{\lambda} \sin \lambda \theta$.
Differentiating the function $\|\nabla \Psi-\vec{a}\|_{0, \triangle}^{2}$ w.r.t. \vec{a}, one obtains the minimum for

$$
\vec{a}_{*}=\frac{1}{\int_{\triangle} 1 d x}\left(\int_{\triangle} \frac{\partial \Psi}{\partial x_{1}} d x, \int_{\triangle} \frac{\partial \Psi}{\partial x_{2}} d x\right)
$$

Further we use the relations

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial x_{1}}=\cos \theta \frac{\partial \Psi}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial \Psi}{\partial \theta} \\
& \frac{\partial \Psi}{\partial x_{2}}=\sin \theta \frac{\partial \Psi}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial \Psi}{\partial \theta}
\end{aligned}
$$

Appendix

For convenience we will also consider circle sectors $\sigma \subset \triangle \subset \bar{\sigma}$. Then

$$
\int_{\bar{\sigma}} F(x) d x \geq \int_{\triangle} F(x) d x \geq \int_{\sigma} F(x) d x
$$

for any $F(x) \geq 0$ and, switching to polar coordinates, we have
$\int_{\sigma} F(x) d x=\int_{0}^{c h} d r \int_{\theta_{1}}^{\theta_{2}} d \theta r F(r, \theta), \int_{\bar{\sigma}} F(x) d x=\int_{0}^{\bar{c} h} d r \int_{\theta_{1}}^{\theta_{2}} d \theta r F(r, \theta)$.
for some $0<c<\bar{c}$.

Appendix

For convenience we will also consider circle sectors $\sigma \subset \triangle \subset \bar{\sigma}$. Then

$$
\int_{\bar{\sigma}} F(x) d x \geq \int_{\triangle} F(x) d x \geq \int_{\sigma} F(x) d x
$$

for any $F(x) \geq 0$ and, switching to polar coordinates, we have
$\int_{\sigma} F(x) d x=\int_{0}^{c h} d r \int_{\theta_{1}}^{\theta_{2}} d \theta r F(r, \theta), \int_{\bar{\sigma}} F(x) d x=\int_{0}^{\overline{c h}} d r \int_{\theta_{1}}^{\theta_{2}} d \theta r F(r, \theta)$.
for some $0<c<\bar{c}$.
Expressions for $\frac{\partial \psi}{\partial x_{1}}, \frac{\partial \Psi}{\partial x_{2}}$ allow us to estimate

$$
\left|\int_{\Delta} \frac{\partial \Psi}{\partial x_{1}} d x\right| \leq \int_{\bar{\sigma}}\left|\frac{\partial \Psi}{\partial x_{1}}\right| d x \leq C_{\bar{\sigma}}^{0} \int_{0}^{c h} r^{\lambda} d r \leq C_{\bar{\sigma}} h^{\lambda+1}
$$

as well as for $\frac{\partial \psi}{\partial x_{2}}$.

Appendix

Taking into account that $\int_{\triangle} 1 d x=O\left(h^{2}\right)$, last inequality means:
$\left|\vec{a}_{*}\right|=O\left(h^{\lambda-1}\right)$.
Expressions for $\frac{\partial \Psi}{\partial x_{1}}, \frac{\partial \Psi}{\partial x_{2}}$, which can be expressed as $G_{i}(\theta) r^{\lambda-1}, i=1,2$ with certain trigonometric functions $G_{i}(\theta)$, also yield that on a fixed circle sector $\sigma_{1} \subset \sigma$ (with polar angles $\theta \in\left(\theta_{1}, \theta_{2}\right)$ away from the roots of $G_{i}(\theta)$ and radius $\underline{c} h$ for some $0<\underline{c}<c$) the estimates

$$
\left|\frac{\partial \Psi}{\partial x_{1}}\right| \geq c_{0} r^{\lambda-1},\left|\frac{\partial \Psi}{\partial x_{2}}\right| \geq c_{0} r^{\lambda-1}
$$

hold.
Then due to the estimate for $\left|\vec{a}_{*}\right|$ one can choose such a circle sector $\sigma_{2} \subset \sigma_{1}$ (with radius αh for some $\alpha>0$) that for a given $c_{1}<c_{0}$:

$$
\left|\nabla \Psi-\vec{a}_{*}\right|_{2} \geq c_{1} r^{\lambda-1}
$$

Appendix

Finally, we obtain

$$
\begin{aligned}
& \left\|\nabla \Psi-\vec{a}_{*}\right\|_{0, \triangle}^{2} \geq\left\|\nabla \Psi-\vec{a}_{*}\right\|_{0, \sigma_{2}}^{2} \\
& =\int_{0}^{\alpha h} d r \int_{\theta_{\mathbf{1}}}^{\theta_{\mathbf{2}}} d \theta r\left|\nabla \Psi-\vec{a}_{*}\right|_{2}^{2} \\
& \geq \int_{0}^{\alpha h} d r \int_{\theta_{\mathbf{1}}}^{\theta_{2}} d \theta r c_{1}^{2} r^{2 \lambda-2} \geq c_{3} \int_{0}^{\alpha h} r^{2 \lambda-1} d r=C^{2} h^{2 \lambda}
\end{aligned}
$$

which proves the required lower estimate for $\left\|\nabla \Psi-\vec{a}_{*}\right\|_{0, \Delta}$.

