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Motivating example

One-dimensional BVP:

−(ay ′)′ = f , x ∈ (0, 1),

y(0) = y(1) = 0

where
• a ≥ a0 > 0 with discontinuity at x = ξ (0 < ξ < 1)

• right-hand side f is piecewise smooth.



Motivating example

Thence we reformulate the problem: state equation

− (ay ′)′ = f , 0 < x < ξ and ξ < x < 1, (1)
y(0) = y(1) = 0

and continuity conditions

lim
x→ξ−0

y(x) = lim
x→ξ+0

y(x),

lim
x→ξ−0

ay ′ = lim
x→ξ+0

ay ′,

or, briefly,
[y ]x=ξ = 0, [ay ′]x=ξ = 0. (2)



Motivating example

Even for smooth right-hand side f , usually the solution y /∈ H2((0, 1)).

Example

Let ξ = 1/2, f ≡ 1, a =

{
2, 0 ≤ x ≤ 1/2
1, 1/2 < x ≤ 1

.

Then the solution is

y =

{
− x2

4 + 7
24x , 0 ≤ x ≤ 1/2

− x2

2 + 7
12x − 1

12 , 1/2 < x ≤ 1
.

One can see y ∈ H1((0, 1)), but y /∈ H2((0, 1))
(since y ′ is discontinuous).



Motivating example

Multiply the equation

−(ay ′)′ = f , 0 < x < ξ and ξ < x < 1,

by an arbitrary function φ ∈ H1
0 ((0, 1)) and integrate on (0, 1). Then

using integration by parts on (0, ξ) and (ξ, 1) and jump condition from
(2), we deduce ∫ 1

0
ay ′φ′ dx =

∫ 1

0
f φ dx . (3)

The converse statement is also true: if y ∈ H1
0 ((0, 1)) satisfies (3) for any

φ ∈ H1
0 ((0, 1)), then it satisfies the system (1) and the conditions (2).



Variational numerical scheme in 1D

We focus on the variational solution y of the problem (3). Consider a
variational scheme based on piecewise linear approximations and
corresponding order of approximation.
Also consider on (0, 1) a regular mesh xi = ih, i = 1, . . . ,N, h = 1/N.
Approximate solution ṽ ∈ Vh ⊂ H1

0 ((0, 1)) satisfies the integral equation∫ 1

0
aṽ ′φ̃′ dx =

∫ 1

0
f φ̃ dx

for any φ̃ ∈ Vh.
For the approximation error (y − ṽ) we have an estimate

‖y − ṽ‖1,(0,1) ≤ C‖y − ỹ‖1,(0,1),

where ỹ is a nodal interpolant of y(x).



Variational numerical scheme in 1D

When the point of discontinuity ξ coincides with one meshnode, the
terms of

‖y − ỹ‖21,(0,1) = ‖y − ỹ‖21,(0,ξ) + ‖y − ỹ‖21,(ξ,1)

are estimated above by Ch2‖y‖22,(0,ξ) and Ch2‖y‖22,(ξ,1).
As a result,

‖y − ṽ‖1,(0,1) = O(h).



Variational numerical scheme in 1D

When there is no meshnode in O(h2)-neighborhood of singular point ξ:

• for simplicity ξ = 1/2
• N is odd
• closest meshnodes are xL = 1/2− h/2, xR = 1/2 + h/2

Then

‖y − ṽ‖21,(0,1) ≥
∫ xR

xL

(y ′ − ṽ ′)2 dx ≥ min
α

∫ xR

xL

(y ′ − α)2 dx .

Discontinuity of y ′ at 1/2 yields that

min
α

∫ xR

xL

(y ′ − α)2 dx ≥ Ch + O(h2)

⇒ ‖y − ṽ‖1,(0,1) ≥ Ch1/2.



2D problem with discontinuous coefficients

In the domain Ω ⊂ R2 with smooth boundary S consider the equation

Lu ≡ − ∂

∂xi
aij
∂u
∂xj

+ bi
∂u
∂xi

+ au = f (4)

with one type of boundary conditions

u
∣∣
S = 0, (5)( ∂u

∂N
+ σu

)∣∣∣∣
S

= 0. (6)



2D problem with discontinuous coefficients

Conditions on the data:
• coefficients b1, b2, a and right-hand side f are bounded piecewise

smooth functons
• coefficients aij have discontinuities along smooth closed curve Γ ⊂ Ω

• aij are bounded and continuous on Ω1 (bounded by Γ) and
Ω2 = Ω \ Ω1

• ∂aij
∂xk

are bounded and piecewise smooth on Ω1 and Ω2



2D problem with discontinuous coefficients

For the problem (4), (5) or (4), (6) we require on the curve Γ

[u]
∣∣
Γ

= 0,
[ ∂u
∂N

]∣∣∣∣
Γ

= 0, (7)

where [ ∂u
∂N

]∣∣∣∣
Γ

= a+
ij
∂u+

∂xi
cos(ν, xj)− a−ij

∂u−

∂xi
cos(ν, xj).

Classical solution satisfies
• u(x) ∈ C (Ω̄) ∩ C 1(Ωi ), i = 1, 2
• u(x) ∈ C 2(Ωi ), i = 1, 2
• Lu = f on Ω1 ∪ Ω2



2D problem with discontinuous coefficients

Define generalized solution for (4), (5), (7) with f ∈ L2(Ω): u ∈ H1
0 (Ω)

satisfies

LΩ(u, ϕ) =

∫
Ω

[
aij
∂u
∂xi

∂ϕ

∂xj
+ bi

∂u
∂xi

ϕ+ auϕ
]

dΩ =

∫
Ω

f ϕ dΩ

for any ϕ ∈ H1
0 (Ω).

If u ∈ H2(Ωi ), i = 1, 2, then (integrating by parts)∫
Ω

(Lu − f )ϕ dΩ +

∫
Γ

ϕ
[ ∂u
∂N

]
ds = 0,

hence

Lu = f ,[ ∂u
∂N

]∣∣∣∣
Γ

= 0.



2D problem with discontinuous coefficients
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2D problem with piecewise smooth boundary

Again consider in Ω ⊂ R2 the equation

Lu ≡ − ∂

∂xi
aij
∂u
∂xj

+ bi
∂u
∂xi

+ au = f

with 1st, 3rd types of BC, or

u
∣∣
S1

= 0,
( ∂u
∂N

+ σu
)∣∣∣∣

S2

= 0, (8)

where S = S1 ∪ S2.
Coefficients and RHS of the equation satisfy regularity conditions (A).
But for mixed BC (8) in general u /∈ H2(Ω).



2D problem with piecewise smooth boundary

Generalized solution for mixed BC: u ∈ H1
S1

(Ω) satisfies

LΩ,S2(u, ϕ) ≡
∫

Ω

[
aij
∂u
∂xi

∂ϕ

∂xj
+bi

∂u
∂xi

ϕ+auϕ
]

dΩ +

∫
S2

σuϕ ds = (f , ϕ)Ω

for any ϕ ∈ H1
S1

(Ω).



2D problem with piecewise smooth boundary

Consider ω – the sector of unit circle with angle β, and corresponding
Dirichlet problem for Poisson equation:

−4u = f , u
∣∣
S = 0. (9)

Function
Ψ = ζ(r)rλ sinλθ

is a generalized solution of (9), where λ = π/β and

ζ =

{
1, 0 ≤ r ≤ 1/3
0, 2/3 ≤ r ≤ 1

is monotone and smooth.

One can verify that Ψ ∈ H1
0 (ω).



2D problem with piecewise smooth boundary

Using

4u =
∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2
∂2u
∂θ2 ,

one can show that 4Ψ ∈ L2(ω).
Notice that

‖Ψ‖22,ω ≥
∫
ω

(∂2Ψ

∂r2

)2
r dr dθ ≥

∫ 1/2

0

∫ β

0
λ2(λ− 1)2r2λ−3 sin2 λθ dr dθ.

When π < β < 2π, we have 1/2 < λ < 1 and Ψ /∈ H2(ω).

Singular points on the boundary:
• corner points with inner angles π < β < 2π
• points of switching the boundary condition: S1 ∩ S2
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2D problem with piecewise smooth boundary

Theorem
Any solution of the stated problem with f ∈ L2(Ω) can be expressed as

u =
∑

j

γjΨj + w ,

where w ∈ H2(Ω), γj are constant, Ψj ∈ H1(Ω) are independent of f and

1. LΨj ∈ L2(Ω)

2. each singular point generates one or two functions Ψj ; if BC is not
switched, then exactly one function Ψj

3. Ψj is non-zero only near the corresponding singular point
4. Ψj

∣∣
S1

= 0

In addition, ∑
j

|γj |+ ‖w‖2,Ω ≤ C‖f ‖0,Ω.



2D problem with piecewise smooth boundary

Exact representation of Ψj : find u

−4u = 0 in ω
u(r , 0) = u(r , β) = 0

in the form u = rµΦ(θ).
We have

d2Φ

dθ2 + µ2Φ = 0.

Since Φ(0) = Φ(β) = 0, non-trivial solution exists for µn = nλ
(λ = π/β):

Φn = sin nλθ, n = 1, 2, . . .

⇒ un = rnλ sin nλθ.

Since un(r , θ) ∈ H2(ω) (n > 1), but u1(r , θ) /∈ H2(ω), a singular function
has a form

Ψ = ζ(r)u1(r , θ) = ζ(r)rλ sinλθ.



2D problem with piecewise smooth boundary
Other cases of BC:
1. ∂u

∂n

∣∣∣
θ=0

= ∂u
∂n

∣∣∣
θ=β

= 0, π < β < 2π

⇒ Ψ = ζ(r)rλ cosλθ, λ = π/β

2. ∂u
∂n

∣∣∣
θ=0

= u
∣∣
θ=β

= 0, π/2 < β < 2π

⇒ Ψ1 = ζ(r)rλ1 cosλ1θ, λ1 = π/2β for π/2 < β ≤ 3π/2

and also

Ψ2 = ζ(r)rλ2 cosλ2θ, λ2 = 3π/2β for 3π/2 < β < 2π

3. u
∣∣
θ=0 = ∂u

∂n

∣∣∣
θ=β

= 0, π/2 < β < 2π

⇒ Ψ1 = ζ(r)rλ1 sinλ1θ, λ1 = π/2β for π/2 < β ≤ 3π/2

and also

Ψ2 = ζ(r)rλ2 sinλ2θ, λ2 = 3π/2β for 3π/2 < β < 2π



2D problem with piecewise smooth boundary

Defining singular functions for general operator L with piecewise linear
boundary around corner points:
1. change of variables

η1 = x1 + µx2, η2 = νx2

to obtain L̃ = −4η + b̃j
∂
∂ηj

+ ã

2. for sufficiently small ε > 0 the example of singular function is (in
polar coordinates (ρ, κ))

Ψ = ζ(ρ/ε)ρλ sinλκ



Singularities for intersection of discontinuity curve with
boundary

Arising singularity functions depend only on
• coefficients aij for 2nd derivatives at intersection points
• angles between discontinuity curve and jointed parts of the boundary

Model problem:
a+4u+ = f + in Ω+

a−4u− = f − in Ω−

u
∣∣
S = 0

u+
∣∣
x2=0 = u−

∣∣
x2=0, a+ ∂u+

∂n+

∣∣∣
x2=0

= a− ∂u−

∂n+

∣∣∣
x2=0

where u =

{
u+ in Ω+,

u− in Ω−,
f =

{
f + in Ω+,

f − in Ω−,
, Ω− = Ω \ Ω+,

Ω+ ∩ Ω− ⊂ {x : x2 = 0}.
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Singularities for intersection of discontinuity curve with
boundary

Theorem
In the given problem for any f ∈ L2(Ω) there exists a generalized solution
u ∈ H1

0 (Ω) which can be written as

u =
∑

j

γjΨj + w ,

where Ψj ∈ H1(Ω) are independent of f , w ∈ B2(Ω), a+4Ψj ∈ L2(Ω+),
a−4Ψj ∈ L2(Ω−). Number of Ψj is not greater than 2.



Singularities for intersection of discontinuity curve with
boundary

Determining the functions Ψj :
solve the homogeneous problem in polar coordinates in the form

u = rµΦ(θ), where Φ(θ) =

{
Φ+(θ), 0 < θ < β+,

Φ−(θ), −β− < θ < 0.
Boundary conditions:

u+(r , β+) = u−(r ,−β−) = 0.

The state equation reads as

a(θ)Φ′′(θ) + a(θ)µ2Φ(θ) = 0,

where a(θ) =

{
a+, 0 < θ < β+,

a−, −β− < θ < 0.



Singularities for intersection of discontinuity curve with
boundary

Due to BC Φ+(β+) = Φ−(−β−) = 0 we obtain

Φ+ = C+ sinµ(β+ − θ), Φ− = C− sinµ(β− + θ).

Compatibility conditions yield that

C+ sinµβ+ = C− sinµβ−
−a+C+µ cosµβ+ = a−C−µ cosµβ−.

This system has a non-trivial solution wrt C+, C−, if the determinant

D(µ) ≡ a−µ sinµβ+ cosµβ− + a+µ sinµβ− cosµβ+ = 0.

One can show that the equation has at most two solutions on (0, 1).
Finally,

Ψj(r , θ) = ζ(r)rµj

{
sinµj(β+ − θ), 0 < θ < β+,

sinµj(β− + θ), −β− < θ < 0,

where 0 < µj < 1 are roots of D(µ).
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Accuracy of variational schemes for piecewise smooth
boundary

Consider piecewise linear approximations on nonregular mesh.
Let a singular point on ∂Ω be the origin, and corresp. singular function
Ψ = ζ(r/ε)rλ sinλθ, 0 < λ < 1. Then solution in this neighborhood has
a form u = γΨ + w , w ∈ H2(Ω).

Consider a triangle 4 from the mesh lying at a distance O(h) from the
origin. For approximate solution ṽ

‖u − ṽ‖1,Ω ≥ ‖γΨ + w − ṽ‖1,4 ≥ ‖γΨ + w̃ − ṽ‖1,4 − ‖w − w̃‖1,4
≥ min
φ̃∈Vh

|γ|‖Ψ− φ̃‖1,4 − ‖w − w̃‖1,4.

Since ∇φ̃ is constant on 4,

‖γΨ + w − ṽ‖1,4 ≥ |γ| min
~a∈R2

∥∥∥∇Ψ−~a
∥∥∥

0,4
− ‖w − w̃‖1,4.
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Accuracy of variational schemes for piecewise smooth
boundary

Assume that origin is one of triangle vertices. Then (see Appendix)

min
~a∈R2

∥∥∥∇Ψ−~a
∥∥∥

0,4
≥ Chλ.

Since ‖w − w̃‖1,4 ≤ Ch, for γ 6= 0 and sufficiently small h an upper
bound

‖u − ṽ‖1,Ω ≥ Chλ

holds.



Variational schemes for problems with discontinuous
coefficients

Consider elliptic problems with smooth boundary S and pure 1st or 3rd
type of BC. Here the curve of discontinuity Γ is closed and smooth,
Γ ∩ S = ∅.

We build the mesh Ωh
ex for piecewise linear approximations using

non-regular triangulations, s.t.

∃Γh ⊂ Ω2 constructed of the sides of the triangles,

dist(Γh, Γ) = O(h2).

Note that
‖u − ṽ‖1,Ω ≤ C‖u − ũ‖1,Ωh

ex
,

where ũ is a nodal interpolant of u ∈ B2(Ω).
Denote by Ωh

1 the area bounded by the curve Γh. Approximation property:

‖u − ũ‖1,Ωh
ex\Ωh

1
≤ Ch‖u‖2,Ω2 .
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∃Γh ⊂ Ω2 constructed of the sides of the triangles,

dist(Γh, Γ) = O(h2).

Note that
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Variational schemes for problems with discontinuous
coefficients

Denote by u1 the continuation of u from Ω1 to Ω2, s.t. u1 ∈ H2(Ω).
Note that

‖u − ũ‖1,Ωh
1
≤ ‖u − u1‖1,Ωh

1
+ ‖u1 − ũ1‖1,Ωh

1
+ ‖ũ1 − ũ‖1,Ωh

1
.

Evidently, ‖u − u1‖1,Ωh
1

= ‖u − u1‖1,Ωh
1\Ω1

.
Ωh

1 \ Ω1 is a strip of width O(h2). Then due to a corresp. theorem

‖u − u1‖1,Ωh
1\Ω1

≤ Ch‖u − u1‖2,Ω2

≤ Ch(‖u‖2,Ω2 + ‖u1‖2,Ω2) ≤ Ch(‖u‖2,Ω2 + ‖u‖2,Ω1).

Estimating other two terms, we obtain

‖u1 − ũ1‖1,Ωh
1
≤ Ch‖u‖2,Ω1 ,

‖ũ1 − ũ‖1,Ωh
1
≤ Ch(‖u‖2,Ω1 + ‖u‖2,Ω2).



Variational schemes for problems with discontinuous
coefficients

Summarizing, one derives

‖u − ũ‖1,Ωh
ex
≤ Ch(‖u‖2,Ω1 + ‖u‖2,Ω2),

hence
‖u − ṽ‖1,Ω ≤ Ch(‖u‖2,Ω1 + ‖u‖2,Ω2).



Variational schemes with additive selection of singular
functions

Assume that domain Ω has two corner points on S with angles βj > π.
Then solution can be written as

u = γ1Ψ1 + γ2Ψ2 + w .

Approximate solution for the regular mesh Ωh
ex we will seek in the form

v = κ1Ψ1 + κ2Ψ2 + p̃,

where p̃ is a piecewise linear function from Vh.

We seek v as a solution of the integral identity

LΩ,S(v , φ) = (f , φ)Ω

for any φ = µ1Ψ1 + µ2Ψ2 + θ̃, θ̃ ∈ Vh.
In this case Galerkin system contains basis functions of Vh and Ψ1, Ψ2.
The following estimate holds:

‖u − v‖1,Ω ≤ C min
φ
‖u − φ‖1,Ω,
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Variational schemes with additive selection of singular
functions

Taking φ = γ1Ψ1 + γ2Ψ2 + w̃ , where w̃ is a nodal interpolant of w , we
obtain

‖u − v‖1,Ω ≤ C‖w − w̃‖1,Ω.

Results of approximation theorem in 2D:

‖w − w̃‖1,Ω ≤ Ch‖w‖2,Ω,
‖w − w̃‖0,Ω ≤ Ch2‖w‖2,Ω

together with the inequality
∑
j
|γj |+ ‖w‖2,Ω ≤ C‖f ‖0,Ω yield

‖u − v‖1,Ω ≤ C̃h‖f ‖0,Ω,
‖u − v‖0,Ω ≤ C̃h2‖f ‖0,Ω.



Solution of Galerkin system with singular basis functions

Matrix L of the system

LΩ,S(v ,Ψ1) = (f ,Ψ1)Ω,

LΩ,S(v ,Ψ2) = (f ,Ψ2)Ω,

LΩ,S(v , φki ) = (f , φki )Ω.

is dense at 1st and 2nd rows.

We apply orthogonal factorization:

v = w̃0 + k1w1 + k2w2,

where LΩ,S(w1, w̃0) = LΩ,S(w2, w̃0) = LΩ,S(w2,w1) = 0.
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Solution of Galerkin system with singular basis functions

Let w1 ≡ Ψ1 − q̃1, where q̃1 ∈ Vh solves the equation

LΩ,S(Ψ1 − q̃1, θ̃) = 0 (10)

for any θ̃ ∈ Vh.

Then define w2 ≡ Ψ2 + µw1 − q̃2, s.t.

LΩ,S(q̃2, θ̃) = LΩ,S(Ψ2, θ̃) (11)

for any θ̃ ∈ Vh, and

µ = −LΩ,S(Ψ2 − q̃2,w1)

LΩ,S(w1,w1)

to satisfy LΩ,S(w2,w1) = 0.
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Solution of Galerkin system with singular basis functions

3rd equation is to find w̃0 ∈ Vh:

LΩ,S(w̃0, θ̃) = (f , θ̃)Ω (12)

for any θ̃ ∈ Vh.
Coefficients k1, k2 can be found from the expressions

k1 =
(f ,w1)Ω − LΩ,S(w̃0,w1)

LΩ,S(w1,w1)
,

k2 =
(f ,w2)Ω − LΩ,S(w̃0,w2)− k1LΩ,S(w1,w2)

LΩ,S(w2,w2)
.



Solution of Galerkin system with singular basis functions

Assembling matrices for (10), (11), (12) requires the computation of
LΩ,S(Ψ,Ψ), LΩ,S(Ψ, φki ), (f ,Ψ)Ω.
On the mesh triangles in the neighborhood of the corner points one has
to evaluate the integrals of the form∫

4
α
( ∂Ψ

∂x1

)i1( ∂Ψ

∂x2

)i2
dΩ,

where α is a linear function, 1 ≤ i1 + i2 ≤ 2.
Since in the polar coordinates Ψ = ζ(r)rλ cosλθ, this double integrals
reduce to multiple integrals of the terms as

rν cosm1 λθ sinm2 λθ cosn1 θ sinn2 θ.
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Appendix
Now we prove that

min
~a∈R2

∥∥∥∇Ψ−~a
∥∥∥

0,4
≥ Chλ,

where Ψ = ζ(r/ε)rλ sinλθ, 0 < λ < 1.
Note that for sufficiently small h > 0 we have Ψ = rλ sinλθ.

Differentiating the function
∥∥∥∇Ψ−~a

∥∥∥2

0,4
w.r.t. ~a, one obtains the

minimum for

~a∗ =
1∫

4 1 dx

(∫
4

∂Ψ

∂x1
dx ,
∫
4

∂Ψ

∂x2
dx
)
.

Further we use the relations

∂Ψ

∂x1
= cos θ

∂Ψ

∂r
− 1

r
sin θ

∂Ψ

∂θ
,

∂Ψ

∂x2
= sin θ

∂Ψ

∂r
+

1
r
cos θ

∂Ψ

∂θ
.



Appendix

For convenience we will also consider circle sectors σ ⊂ 4 ⊂ σ̄. Then∫
σ̄

F (x) dx ≥
∫
4

F (x) dx ≥
∫
σ

F (x) dx

for any F (x) ≥ 0 and, switching to polar coordinates, we have∫
σ

F (x) dx =

∫ ch

0
dr
∫ θ2

θ1

dθ rF (r , θ),

∫
σ̄

F (x) dx =

∫ c̄h

0
dr
∫ θ2

θ1

dθ rF (r , θ).

for some 0 < c < c̄ .

Expressions for ∂Ψ
∂x1

, ∂Ψ
∂x2

allow us to estimate

∣∣∣∫
4

∂Ψ

∂x1
dx
∣∣∣ ≤ ∫

σ̄

∣∣∣ ∂Ψ

∂x1

∣∣∣ dx ≤ C 0
σ̄

∫ ch

0
rλ dr ≤ Cσ̄hλ+1,

as well as for ∂Ψ
∂x2

.
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Taking into account that
∫
4 1 dx = O(h2), last inequality means:

|~a∗| = O(hλ−1).

Expressions for ∂Ψ
∂x1

, ∂Ψ
∂x2

, which can be expressed as Gi (θ)rλ−1, i = 1, 2
with certain trigonometric functions Gi (θ), also yield that on a fixed
circle sector σ1 ⊂ σ (with polar angles θ ∈ (θ1, θ2) away from the roots
of Gi (θ) and radius ch for some 0 < c < c) the estimates∣∣∣ ∂Ψ

∂x1

∣∣∣ ≥ c0rλ−1,
∣∣∣ ∂Ψ

∂x2

∣∣∣ ≥ c0rλ−1

hold.

Then due to the estimate for |~a∗| one can choose such a circle sector
σ2 ⊂ σ1 (with radius αh for some α > 0) that for a given c1 < c0:∣∣∣∇Ψ−~a∗

∣∣∣
2
≥ c1rλ−1.
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Finally, we obtain∥∥∥∇Ψ−~a∗
∥∥∥2

0,4
≥
∥∥∥∇Ψ−~a∗

∥∥∥2

0,σ2

=

∫ αh

0
dr
∫ θ2

θ1

dθ r
∣∣∣∇Ψ−~a∗

∣∣∣2
2

≥
∫ αh

0
dr
∫ θ2

θ1

dθ rc2
1 r2λ−2 ≥ c3

∫ αh

0
r2λ−1 dr = C 2h2λ,

which proves the required lower estimate for
∥∥∥∇Ψ−~a∗

∥∥∥
0,4

.
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