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Motivation

• extend trace theorem for polygonal domain Ω, when u /∈ H2(Ω)

• corresponding generalization of Green’s formula
• prove density results for spaces with boundary conditions (for

polygonal domains)



Standard Green formulas

Theorem
Let Ω be a bounded Lipschitz open subset of Rn. Then for any
u, v ∈ H1(Ω) ∫

Ω

vDiu dx +

∫
Ω

uDiv dx =

∫
Γ

γu γv ν i dσ,

where Di = ∂
∂xi

and ν i is the i-th component of exterior unit normal
vector ν.

• For u ∈ H1(Ω), v ∈ H2(Ω) we have ’half Green formula’∫
Ω

u4v dx +

∫
Ω

∇u · ∇v dx =

∫
Γ

γu γ
(∂v
∂ν

)
dσ

• for u, v ∈ H2(Ω) we have the full Green formula∫
Ω

u4v dx −
∫

Ω

v4u dx =

∫
Γ

γu γ
(∂v
∂ν

)
dσ −

∫
Γ

γv γ
(∂u
∂ν

)
dσ.
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Trace theorem: Formulation

Define
D(4, L2(Ω)) = {v ∈ L2(Ω): 4v ∈ L2(Ω)},

where 4v is understood in the distributional sense.
This is a Hilbert space for the norm

v 7→
(
‖v‖2 + ‖4v‖2

)1/2
.

Similarly to [Lions-Magenes, 1968] one can prove that H2(Ω) is dense in
D(4, L2(Ω)).

Theorem
Let Ω be a bounded polygonal open subset of R2. Then the mapping
v 7→

{
γjv , γj

∂v
∂νj

}
, which is defined for v ∈ H2(Ω), has a unique

continuous extension as an operator

D(4, L2(Ω))→ H̃−1/2(Γj)× H̃−3/2(Γj).
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Trace theorem: Proof

The full Greeen formula implies for any u, v ∈ H2(Ω)∣∣∣∑
j
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where K depends on v and can be chosen as
K =

(
‖v‖20,Ω + ‖4v‖20,Ω

)1/2.

For fixed j , consider

U = {u ∈ H2(Ω): γku = γk
( ∂u
∂νk

)
= 0 on Γk for all k 6= j}.

Then for any u ∈ U∣∣∣∫
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Trace theorem: Proof

It is shown (in the previous report) that u 7→
{
fj,0 = γju, fj,1 = γj

(
∂u
∂νj

)}
maps U onto H̃3/2(Γj)× H̃1/2(Γj) defined by
a) fj,0(Sj) = fj,0(Sj−1) = 0;

b) ∂fj,0
∂τj
≡ 0 and fj,1 ≡ 0 at Sj and Sj−1.

Remark
Recall that functions ϕj and ϕj+1 defined on Γj and Γj+1 respectively, are
equivalent at Sj : ϕj ≡ ϕj+1, if∫ δj

0
|ϕj(xj(−σ))− ϕj+1(xj(σ))|2 dσ/σ < +∞.

When ϕj and ϕj+1 are Hölder continuous near Sj , it follows that
ϕj(Sj) = ϕj+1(Sj).
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Trace theorem: Proof

Since the linear mapping u 7→
{
ϕ = γju, ψ = γj

(
∂u
∂νj

)}
is ’onto’ and for

any (ϕ,ψ) ∈ H̃3/2(Γj)× H̃1/2(Γj) their prototype u uniformly satisfies

‖u‖U = ‖u‖2,Ω ≤ C‖(ϕ,ψ)‖H̃3/2(Γj )×H̃1/2(Γj ),

the following linear form

L(ϕ,ψ) =

∫
Γj

ϕγj

( ∂v
∂νj

)
dσ −

∫
Γj

ψγjv dσ

is continuous on H̃3/2(Γj)× H̃1/2(Γj).

Due to the density of H2(Ω) in D(4, L2(Ω)) and uniform boundedness of
L(ϕ,ψ) w.r.t. K = ‖v‖D(4,L2(Ω)), there exists a (unique continuous)
extension of v 7→

{
γjv , γj

∂v
∂νj

}
as an operator

D(4, L2(Ω))→ H̃−1/2(Γj)× H̃−3/2(Γj).
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Generalizing Green formula

It is shown in [Lions-Magenes, 1968] that the full Green formula still
holds for v ∈ D(4, L2(Ω)) and u ∈ H2(Ω) when
• Ω is bounded and has C∞ boundary;
•
∫

Γ
are understood as duality brackets.

Problem of extending this result for polygonal Ω:
•
∫

Γ
as duality brackets are meaningful only if

γju ∈ H̃3/2(Γj), γj

( ∂u
∂νj

)
∈ H̃1/2(Γj)

and this is not true for all u ∈ H2(Ω).
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Theorem for generalized Green formula

Theorem
Let Ω be a bounded polygonal open subset of R2. Then for any
v ∈ D(4, L2(Ω)) and u ∈ H2(Ω) such that

γju ∈ H̃3/2(Γj), γj

( ∂u
∂νj

)
∈ H̃1/2(Γj) for all j ,

we have∫
Ω

u4v dx −
∫

Ω

v4u dx =
∑

j

(〈
γju, γj

( ∂v
∂νj

)〉
−
〈
γjv , γj

( ∂u
∂νj

)〉)
.



Theorem for generalized Green formula: Proof

The equality holds for any u, v ∈ H2(Ω).

For any fixed u (that satisfies the conditions of the theorem) from the
proof of trace theorem one can see that both sides of the equality are
continuous in the norm of D(4, L2(Ω)) w.r.t. v .

Then the statement follows from the density of H2(Ω) in D(4, L2(Ω)).



Other types of trace theorems
Assumption v ∈ D(4, L2(Ω)) is made to ensure the continuity of

v 7→
∫

Ω

u4v dx −
∫

Ω

v4u dx

for u ∈ H2(Ω). Since we have u ∈ C (Ω) (n = 2), we can just assume
v ∈ D(4, L1(Ω)) = {w ∈ L2(Ω): 4w ∈ L1(Ω)}.

Theorem (Grisvard (1985))
Let Ω be a bounded polygonal open subset of R2. Then H2(Ω) is dense
in E (4, Lp(Ω)) = {v ∈ H1(Ω): 4v ∈ Lp(Ω)} (p > 1) and mapping
v 7→ γj

(
∂v
∂νj

)
has unique continuous extensions as an operator from

E (4, Lp(Ω)) into H̃−1/2(Γj).
In addition, one has∫

Ω

u4v dx = −
∫

Ω

∇u · ∇v dx +
∑

j

〈
γju, γj

( ∂v
∂νj

)〉
for any v ∈ E (4, Lp(Ω)), u ∈ H1(Ω) such that γju ∈ H̃1/2(Γj) for all j .
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Motivation: density with boundary conditions

While analyzing homogeneous BVP
• one has to approximate Sobolev spaces with homogeneous boundary

conditions by smoother functions with the same boundary
conditions;

• in the case of smooth domains the corresponding density results are
the consequences of trace results.

In the case of polygons
• similar results are in general difficult to prove;
• we focus on the few cases of direct use.
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• we focus on the few cases of direct use.



First density result

For a mixed BVP for the Laplace equation on a bounded polygonal set
Ω ⊂ R2 we use

V = {u ∈ H1(Ω): γju = 0 on Γj , j ∈ D}.

Theorem
The space Hm(Ω) ∩ V is dense in V for any m > 1.



Density result: Proof

We prove an equivalent statement:
? any continuous linear form on V that vanishes on Hm(Ω) ∩ V ,

actually vanishes everywhere.

It is shown before that
? H1(Ω) is a direct sum of H1

0 (Ω) and the image R of the trace
operator γ = {γj}1≤j≤N (more precisely, its isomorphic analogue).

One can represent a linear form on V as

l(v) = 〈S , v − ργv〉+ 〈g , γv〉,

where S ∈ H−1(Ω), g ∈ R∗, ρ is a right inverse of γ.

• l vanishes on Hm(Ω) ∩ V ⇒ l vanishes on D(Ω)

• ⇒ 〈S , v〉 = 0 on D(Ω) ⇒ S = 0.
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Density result: Proof

l depends only on γv ⇒
• we need only to check that Tm(Γ) is dense in T 1(Γ),
• where Tm(Γ) is the space of traces of elements of Hm(Ω) ∩ V .

As it was proven (in the previous report),
• T 1(Γ) is a subspace of

{ ∏
j∈N

H1/2(Γj)
}
,

• ⇒ any element of T 1(Γ) can be denoted by {gj}j∈N .
Since gj = 0 for j ∈ D, it is known that

gj+1 ≡ gj at Sj for every j . (1)

As it was proven,
• Tm(Γ) is a subspace of

{ ∏
j∈N

Hm−1/2(Γj)
}
defined by

gj+1(Sj) = gj(Sj) for every j . (2)



Density result: Proof

l depends only on γv ⇒
• we need only to check that Tm(Γ) is dense in T 1(Γ),
• where Tm(Γ) is the space of traces of elements of Hm(Ω) ∩ V .

As it was proven (in the previous report),
• T 1(Γ) is a subspace of

{ ∏
j∈N

H1/2(Γj)
}
,

• ⇒ any element of T 1(Γ) can be denoted by {gj}j∈N .

Since gj = 0 for j ∈ D, it is known that

gj+1 ≡ gj at Sj for every j . (1)

As it was proven,
• Tm(Γ) is a subspace of

{ ∏
j∈N

Hm−1/2(Γj)
}
defined by

gj+1(Sj) = gj(Sj) for every j . (2)



Density result: Proof

l depends only on γv ⇒
• we need only to check that Tm(Γ) is dense in T 1(Γ),
• where Tm(Γ) is the space of traces of elements of Hm(Ω) ∩ V .

As it was proven (in the previous report),
• T 1(Γ) is a subspace of

{ ∏
j∈N

H1/2(Γj)
}
,

• ⇒ any element of T 1(Γ) can be denoted by {gj}j∈N .
Since gj = 0 for j ∈ D, it is known that

gj+1 ≡ gj at Sj for every j . (1)

As it was proven,
• Tm(Γ) is a subspace of

{ ∏
j∈N

Hm−1/2(Γj)
}
defined by

gj+1(Sj) = gj(Sj) for every j . (2)



Density result: Proof

l depends only on γv ⇒
• we need only to check that Tm(Γ) is dense in T 1(Γ),
• where Tm(Γ) is the space of traces of elements of Hm(Ω) ∩ V .

As it was proven (in the previous report),
• T 1(Γ) is a subspace of

{ ∏
j∈N

H1/2(Γj)
}
,

• ⇒ any element of T 1(Γ) can be denoted by {gj}j∈N .
Since gj = 0 for j ∈ D, it is known that

gj+1 ≡ gj at Sj for every j . (1)

As it was proven,
• Tm(Γ) is a subspace of

{ ∏
j∈N

Hm−1/2(Γj)
}
defined by

gj+1(Sj) = gj(Sj) for every j . (2)



Density result: Proof

We characterize the condition (1) by

• the function σ 7→ gj+1(xj(σ))− gj(xj(−σ)) belongs to H̃1/2(R+)
near zero when j ∈ N 2;

• the function σ 7→ gj+1(xj(σ)) belongs to H̃1/2(R+) near zero when
j ∈ D and j + 1 ∈ N ;

• the function σ 7→ gj(xj(−σ)) belongs to H̃1/2(R+) near zero when
j ∈ N and j + 1 ∈ D.

Then the density of Tm(Γ) in T 1(Γ) follows as
. the condition (2) is clearly fulfilled when gj ∈ D(R+);

. D(R+) is dense in H̃1/2(R+).
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Second density result

In studying a mixed BVP for the Laplace equation on a bounded polygon
Ω ⊂ R2 will be used a space of strong solutions

V 2(Ω) =
{
u ∈ H2(Ω): γju = 0 on Γj , j ∈ D and γj

( ∂u
∂νj

)
= 0 on Γj , j ∈ N

}
.

Theorem
The space Hm(Ω) ∩ V 2(Ω) is dense in V 2(Ω) for any m > 1.



Density for strong solutions: Proof

Equivalent statement:
? any continuous linear form on V 2(Ω) that vanishes on

Vm(Ω) = Hm(Ω) ∩ V 2(Ω), actually vanishes everywhere.

It is shown before that
? Hm(Ω) is a direct sum of Hm

0 (Ω) and the image Zm(Ω) of the
operator γ =

{
γj
(
∂l

∂ν l
j

)}
1≤j≤N,0≤l≤m−1.

One can represent a linear form on V as

l(v) = 〈S , v − ργv〉+ 〈g , γv〉,

where S ∈ H−m(Ω), g ∈ Zm(Γ)∗, ρ is a right inverse of γ.

• l vanishes on Vm(Ω) ⇒ l vanishes on D(Ω)

• ⇒ 〈S , v〉 = 0 on D(Ω) ⇒ S = 0.
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where S ∈ H−m(Ω), g ∈ Zm(Γ)∗, ρ is a right inverse of γ.

• l vanishes on Vm(Ω) ⇒ l vanishes on D(Ω)

• ⇒ 〈S , v〉 = 0 on D(Ω) ⇒ S = 0.
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Density for strong solutions: Proof

l depends only on γv ⇒
• we need just to check that Zm(Γ) is dense in Z 2(Γ),
• where Zm(Γ) is the space of traces of elements of Vm(Ω).

As it was proven, Z 2(Γ) is a subspace of
∏
j
H3/2(Γj)× H1/2(Γj), whose

elements {gj , hj}j∈N are defined by

gj = 0 on Γj for j ∈ D
hj = 0 on Γj for j ∈ N
gj(Sj) = gj+1(Sj)

g ′j ≡ −g ′j+1 cosωj + hj+1 sinωj at Sj for every j

hj ≡ −hj+1 cosωj + g ′j+1 sinωj at Sj for every j
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Density for strong solutions: Proof

Lemma
The image of Hm(Ω) by the mapping

u 7→
{
γju = gj , γj

∂u
∂νj

= hj
}

1≤j≤N

is the subspace of
∏
j
Hm−1/2(Γj)× Hm−3/2(Γj) defined by

gj(Sj) = gj+1(Sj) (3)

g ′j (Sj) = −g ′j+1(Sj) cosωj + hj+1(Sj) sinωj (4)

hj(Sj) = −hj+1(Sj) cosωj + g ′j+1(Sj) sinωj (5)

− g ′′j (Sj) cosωj − h′j(Sj) sinωj = −g ′′j+1(Sj) cosωj + h′j+1(Sj) sinωj (6)

when m ≥ 4 and

−g ′′j cosωj − h′j sinωj ≡ −g ′′j+1 cosωj + h′j+1 sinωj at Sj

when m = 3.



Density for strong solutions: Proof

Then we describe Zm(Γ) as a subspace of
∏
j
Hm−1/2(Γj)× Hm−3/2(Γj)

defined by

gj = 0 on Γj for j ∈ D
hj = 0 on Γj for j ∈ N

and (3), (4), (5), (6),

Proving density of Zm(Γ) in Z 2(Γ) is carried out by
• considering the conditions for gj , hj near each corner Sj ;

• applying density of D(R+) in H̃1/2(R+).
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