Green's formula and density results

Nadir Bayramov

Seminar on Numerical Analysis

29 October, 2013

Table of Contents

Green formula
Trace theorem
Generalized Green formula

Density results

Density with boundary conditions
Density in a space of strong solutions

Motivation

- extend trace theorem for polygonal domain Ω, when $u \notin H^{2}(\Omega)$
- corresponding generalization of Green's formula
- prove density results for spaces with boundary conditions (for polygonal domains)

Standard Green formulas

Theorem
Let Ω be a bounded Lipschitz open subset of \mathbb{R}^{n}. Then for any $u, v \in H^{1}(\Omega)$

$$
\int_{\Omega} v D_{i} u d x+\int_{\Omega} u D_{i} v d x=\int_{\Gamma} \gamma u \gamma v \nu^{i} d \sigma
$$

where $D_{i}=\frac{\partial}{\partial x_{i}}$ and ν^{i} is the i-th component of exterior unit normal vector ν.

Standard Green formulas

Theorem
Let Ω be a bounded Lipschitz open subset of \mathbb{R}^{n}. Then for any $u, v \in H^{1}(\Omega)$

$$
\int_{\Omega} v D_{i} u d x+\int_{\Omega} u D_{i} v d x=\int_{\Gamma} \gamma u \gamma v \nu^{i} d \sigma
$$

where $D_{i}=\frac{\partial}{\partial x_{i}}$ and ν^{i} is the i-th component of exterior unit normal vector ν.

- For $u \in H^{1}(\Omega), v \in H^{2}(\Omega)$ we have 'half Green formula'

$$
\int_{\Omega} u \triangle v d x+\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Gamma} \gamma u \gamma\left(\frac{\partial v}{\partial \nu}\right) d \sigma
$$

- for $u, v \in H^{2}(\Omega)$ we have the full Green formula

$$
\int_{\Omega} u \Delta v d x-\int_{\Omega} v \Delta u d x=\int_{\Gamma} \gamma u \gamma\left(\frac{\partial v}{\partial \nu}\right) d \sigma-\int_{\Gamma} \gamma v \gamma\left(\frac{\partial u}{\partial \nu}\right) d \sigma
$$

Trace theorem: Formulation

Define

$$
D\left(\triangle, L^{2}(\Omega)\right)=\left\{v \in L^{2}(\Omega): \Delta v \in L^{2}(\Omega)\right\}
$$

where Δv is understood in the distributional sense.
This is a Hilbert space for the norm

$$
v \mapsto\left(\|v\|^{2}+\|\Delta v\|^{2}\right)^{1 / 2}
$$

Similarly to [Lions-Magenes, 1968] one can prove that $H^{2}(\Omega)$ is dense in $D\left(\triangle, L^{2}(\Omega)\right)$.

Trace theorem: Formulation

Define

$$
D\left(\triangle, L^{2}(\Omega)\right)=\left\{v \in L^{2}(\Omega): \Delta v \in L^{2}(\Omega)\right\}
$$

where Δv is understood in the distributional sense.
This is a Hilbert space for the norm

$$
v \mapsto\left(\|v\|^{2}+\|\Delta v\|^{2}\right)^{1 / 2}
$$

Similarly to [Lions-Magenes, 1968] one can prove that $H^{2}(\Omega)$ is dense in $D\left(\triangle, L^{2}(\Omega)\right)$.
Theorem
Let Ω be a bounded polygonal open subset of \mathbb{R}^{2}. Then the mapping $v \mapsto\left\{\gamma_{j} v, \gamma_{j} \frac{\partial v}{\partial \nu_{j}}\right\}$, which is defined for $v \in H^{2}(\Omega)$, has a unique continuous extension as an operator

$$
D\left(\triangle, L^{2}(\Omega)\right) \rightarrow \widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{-3 / 2}\left(\Gamma_{j}\right)
$$

Trace theorem: Proof

The full Greeen formula implies for any $u, v \in H^{2}(\Omega)$

$$
\left|\sum_{j}\left\{\int_{\Gamma_{j}} \gamma_{j} u \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \gamma_{j} v \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) d \sigma\right\}\right| \leq K\|u\|_{2, \Omega},
$$

where K depends on v and can be chosen as $K=\left(\|v\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)^{1 / 2}$.

Trace theorem: Proof

The full Greeen formula implies for any $u, v \in H^{2}(\Omega)$

$$
\left|\sum_{j}\left\{\int_{\Gamma_{j}} \gamma_{j} u \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \gamma_{j} v \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) d \sigma\right\}\right| \leq K\|u\|_{2, \Omega},
$$

where K depends on v and can be chosen as
$K=\left(\|v\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)^{1 / 2}$.
For fixed j, consider

$$
U=\left\{u \in H^{2}(\Omega): \gamma_{k} u=\gamma_{k}\left(\frac{\partial u}{\partial \nu_{k}}\right)=0 \text { on } \Gamma_{k} \text { for all } k \neq j\right\} .
$$

Trace theorem: Proof

The full Greeen formula implies for any $u, v \in H^{2}(\Omega)$

$$
\left|\sum_{j}\left\{\int_{\Gamma_{j}} \gamma_{j} u \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \gamma_{j} v \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) d \sigma\right\}\right| \leq K\|u\|_{2, \Omega},
$$

where K depends on v and can be chosen as
$K=\left(\|v\|_{0, \Omega}^{2}+\|\Delta v\|_{0, \Omega}^{2}\right)^{1 / 2}$.
For fixed j, consider

$$
U=\left\{u \in H^{2}(\Omega): \gamma_{k} u=\gamma_{k}\left(\frac{\partial u}{\partial \nu_{k}}\right)=0 \text { on } \Gamma_{k} \text { for all } k \neq j\right\} .
$$

Then for any $u \in U$

$$
\left|\int_{\Gamma_{j}} \gamma_{j} u \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \gamma_{j} v \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) d \sigma\right| \leq K\|u\|_{2, \Omega} .
$$

Trace theorem: Proof

It is shown (in the previous report) that $u \mapsto\left\{f_{j, 0}=\gamma_{j} u, f_{j, 1}=\gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)\right\}$ maps U onto $\widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$ defined by
a) $f_{j, 0}\left(S_{j}\right)=f_{j, 0}\left(S_{j-1}\right)=0$;
b) $\frac{\partial f_{j, 0}}{\partial \tau_{j}} \equiv 0$ and $f_{j, 1} \equiv 0$ at S_{j} and S_{j-1}.

Trace theorem: Proof

It is shown (in the previous report) that $u \mapsto\left\{f_{j, 0}=\gamma_{j} u, f_{j, 1}=\gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)\right\}$ maps U onto $\widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$ defined by
a) $f_{j, 0}\left(S_{j}\right)=f_{j, 0}\left(S_{j-1}\right)=0$;
b) $\frac{\partial f_{j, 0}}{\partial \tau_{j}} \equiv 0$ and $f_{j, 1} \equiv 0$ at S_{j} and S_{j-1}.

Remark

Recall that functions φ_{j} and φ_{j+1} defined on Γ_{j} and Γ_{j+1} respectively, are equivalent at $S_{j}: \varphi_{j} \equiv \varphi_{j+1}$, if

$$
\int_{0}^{\delta_{j}}\left|\varphi_{j}\left(x_{j}(-\sigma)\right)-\varphi_{j+1}\left(x_{j}(\sigma)\right)\right|^{2} d \sigma / \sigma<+\infty
$$

When φ_{j} and φ_{j+1} are Hölder continuous near S_{j}, it follows that $\varphi_{j}\left(S_{j}\right)=\varphi_{j+1}\left(S_{j}\right)$.

Trace theorem: Proof

Since the linear mapping $u \mapsto\left\{\varphi=\gamma_{j} u, \psi=\gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)\right\}$ is 'onto' and for any $(\varphi, \psi) \in \widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$ their prototype u uniformly satisfies

$$
\|u\|_{u}=\|u\|_{2, \Omega} \leq C\|(\varphi, \psi)\|_{\tilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \tilde{H}^{1 / 2}\left(\Gamma_{j}\right)},
$$

the following linear form

$$
L(\varphi, \psi)=\int_{\Gamma_{j}} \varphi \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \psi \gamma_{j} v d \sigma
$$

is continuous on $\widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$.

Trace theorem: Proof

Since the linear mapping $u \mapsto\left\{\varphi=\gamma_{j} u, \psi=\gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)\right\}$ is 'onto' and for any $(\varphi, \psi) \in \widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$ their prototype u uniformly satisfies

$$
\|u\|_{U}=\|u\|_{2, \Omega} \leq C\|(\varphi, \psi)\|_{\widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)},
$$

the following linear form

$$
L(\varphi, \psi)=\int_{\Gamma_{j}} \varphi \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d \sigma-\int_{\Gamma_{j}} \psi \gamma_{j} v d \sigma
$$

is continuous on $\widetilde{H}^{3 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$.
Due to the density of $H^{2}(\Omega)$ in $D\left(\triangle, L^{2}(\Omega)\right)$ and uniform boundedness of $L(\varphi, \psi)$ w.r.t. $K=\|v\|_{D\left(\Delta, L^{2}(\Omega)\right)}$, there exists a (unique continuous) extension of $v \mapsto\left\{\gamma_{j} v, \gamma_{j} \frac{\partial v}{\partial \nu_{j}}\right\}$ as an operator

$$
D\left(\triangle, L^{2}(\Omega)\right) \rightarrow \widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right) \times \widetilde{H}^{-3 / 2}\left(\Gamma_{j}\right) .
$$

Generalizing Green formula

It is shown in [Lions-Magenes, 1968] that the full Green formula still holds for $v \in D\left(\triangle, L^{2}(\Omega)\right)$ and $u \in H^{2}(\Omega)$ when

- Ω is bounded and has C^{∞} boundary;
- \int_{Γ} are understood as duality brackets.

Generalizing Green formula

It is shown in [Lions-Magenes, 1968] that the full Green formula still holds for $v \in D\left(\triangle, L^{2}(\Omega)\right)$ and $u \in H^{2}(\Omega)$ when

- Ω is bounded and has C^{∞} boundary;
- \int_{Γ} are understood as duality brackets.

Problem of extending this result for polygonal Ω :

- \int_{Γ} as duality brackets are meaningful only if

$$
\gamma_{j} u \in \widetilde{H}^{3 / 2}\left(\Gamma_{j}\right), \quad \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) \in \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)
$$

and this is not true for all $u \in H^{2}(\Omega)$.

Theorem for generalized Green formula

Theorem

Let Ω be a bounded polygonal open subset of \mathbb{R}^{2}. Then for any $v \in D\left(\triangle, L^{2}(\Omega)\right)$ and $u \in H^{2}(\Omega)$ such that

$$
\gamma_{j} u \in \widetilde{H}^{3 / 2}\left(\Gamma_{j}\right), \quad \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) \in \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right) \text { for all } j,
$$

we have

$$
\int_{\Omega} u \triangle v d x-\int_{\Omega} v \triangle u d x=\sum_{j}\left(\left\langle\gamma_{j} u, \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right)\right\rangle-\left\langle\gamma_{j} v, \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)\right\rangle\right) .
$$

Theorem for generalized Green formula: Proof

The equality holds for any $u, v \in H^{2}(\Omega)$.
For any fixed u (that satisfies the conditions of the theorem) from the proof of trace theorem one can see that both sides of the equality are continuous in the norm of $D\left(\triangle, L^{2}(\Omega)\right)$ w.r.t. v.
Then the statement follows from the density of $H^{2}(\Omega)$ in $D\left(\triangle, L^{2}(\Omega)\right)$.

Other types of trace theorems

Assumption $v \in D\left(\triangle, L^{2}(\Omega)\right)$ is made to ensure the continuity of

$$
v \mapsto \int_{\Omega} u \triangle v d x-\int_{\Omega} v \Delta u d x
$$

for $u \in H^{2}(\Omega)$. Since we have $u \in C(\bar{\Omega})(n=2)$, we can just assume $v \in D\left(\triangle, L^{1}(\Omega)\right)=\left\{w \in L^{2}(\Omega): \Delta w \in L^{1}(\Omega)\right\}$.

Other types of trace theorems

Assumption $v \in D\left(\triangle, L^{2}(\Omega)\right)$ is made to ensure the continuity of

$$
v \mapsto \int_{\Omega} u \Delta v d x-\int_{\Omega} v \Delta u d x
$$

for $u \in H^{2}(\Omega)$. Since we have $u \in C(\bar{\Omega})(n=2)$, we can just assume $v \in D\left(\triangle, L^{1}(\Omega)\right)=\left\{w \in L^{2}(\Omega): \Delta w \in L^{1}(\Omega)\right\}$.
Theorem (Grisvard (1985))
Let Ω be a bounded polygonal open subset of \mathbb{R}^{2}. Then $H^{2}(\Omega)$ is dense in $E\left(\triangle, L^{p}(\Omega)\right)=\left\{v \in H^{1}(\Omega): \triangle v \in L^{p}(\Omega)\right\}(p>1)$ and mapping $v \mapsto \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right)$ has unique continuous extensions as an operator from $E\left(\triangle, L^{p}(\Omega)\right)$ into $\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right)$.
In addition, one has

$$
\int_{\Omega} u \Delta v d x=-\int_{\Omega} \nabla u \cdot \nabla v d x+\sum_{j}\left\langle\gamma_{j} u, \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right)\right\rangle
$$

for any $v \in E\left(\triangle, L^{p}(\Omega)\right), u \in H^{1}(\Omega)$ such that $\gamma_{j} u \in \widetilde{H}^{1 / 2}\left(\Gamma_{j}\right)$ for all j.

Table of Contents

Green formula
 Trace theorem Generalized Green formula

Density results
Density with boundary conditions
Density in a space of strong solutions

Motivation: density with boundary conditions

While analyzing homogeneous BVP

- one has to approximate Sobolev spaces with homogeneous boundary conditions by smoother functions with the same boundary conditions;
- in the case of smooth domains the corresponding density results are the consequences of trace results.

Motivation: density with boundary conditions

While analyzing homogeneous BVP

- one has to approximate Sobolev spaces with homogeneous boundary conditions by smoother functions with the same boundary conditions;
- in the case of smooth domains the corresponding density results are the consequences of trace results.
In the case of polygons
- similar results are in general difficult to prove;
- we focus on the few cases of direct use.

First density result

For a mixed BVP for the Laplace equation on a bounded polygonal set $\Omega \subset \mathbb{R}^{2}$ we use

$$
V=\left\{u \in H^{1}(\Omega): \gamma_{j} u=0 \text { on } \Gamma_{j}, j \in \mathcal{D}\right\} .
$$

Theorem
The space $H^{m}(\Omega) \cap V$ is dense in V for any $m>1$.

Density result: Proof

We prove an equivalent statement:

* any continuous linear form on V that vanishes on $H^{m}(\Omega) \cap V$, actually vanishes everywhere.

Density result: Proof

We prove an equivalent statement:

* any continuous linear form on V that vanishes on $H^{m}(\Omega) \cap V$, actually vanishes everywhere.
It is shown before that
$\star H^{1}(\Omega)$ is a direct sum of $H_{0}^{1}(\Omega)$ and the image R of the trace operator $\gamma=\left\{\gamma_{j}\right\}_{1 \leq j \leq N}$ (more precisely, its isomorphic analogue).

Density result: Proof

We prove an equivalent statement:

* any continuous linear form on V that vanishes on $H^{m}(\Omega) \cap V$, actually vanishes everywhere.
It is shown before that
$\star H^{1}(\Omega)$ is a direct sum of $H_{0}^{1}(\Omega)$ and the image R of the trace operator $\gamma=\left\{\gamma_{j}\right\}_{1 \leq j \leq N}$ (more precisely, its isomorphic analogue).
One can represent a linear form on V as

$$
I(v)=\langle S, v-\rho \gamma v\rangle+\langle g, \gamma v\rangle,
$$

where $S \in H^{-1}(\Omega), g \in R^{*}, \rho$ is a right inverse of γ.

Density result: Proof

We prove an equivalent statement:

* any continuous linear form on V that vanishes on $H^{m}(\Omega) \cap V$, actually vanishes everywhere.
It is shown before that
$\star H^{1}(\Omega)$ is a direct sum of $H_{0}^{1}(\Omega)$ and the image R of the trace operator $\gamma=\left\{\gamma_{j}\right\}_{1 \leq j \leq N}$ (more precisely, its isomorphic analogue).
One can represent a linear form on V as

$$
I(v)=\langle S, v-\rho \gamma v\rangle+\langle g, \gamma v\rangle,
$$

where $S \in H^{-1}(\Omega), g \in R^{*}, \rho$ is a right inverse of γ.

- I vanishes on $H^{m}(\Omega) \cap V \Rightarrow I$ vanishes on $\mathcal{D}(\Omega)$
- $\Rightarrow\langle S, v\rangle=0$ on $\mathcal{D}(\Omega) \Rightarrow S=0$.

Density result: Proof

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^{m}(\Gamma)$ is dense in $T^{1}(\Gamma)$,
- where $T^{m}(\Gamma)$ is the space of traces of elements of $H^{m}(\Omega) \cap V$.

Density result: Proof

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^{m}(\Gamma)$ is dense in $T^{1}(\Gamma)$,
- where $T^{m}(\Gamma)$ is the space of traces of elements of $H^{m}(\Omega) \cap V$.

As it was proven (in the previous report),

- $T^{1}(\Gamma)$ is a subspace of $\left\{\prod_{j \in \mathcal{N}} H^{1 / 2}\left(\Gamma_{j}\right)\right\}$,
- \Rightarrow any element of $T^{1}(\Gamma)$ can be denoted by $\left\{g_{j}\right\}_{j \in \mathcal{N}}$.

Density result: Proof

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^{m}(\Gamma)$ is dense in $T^{1}(\Gamma)$,
- where $T^{m}(\Gamma)$ is the space of traces of elements of $H^{m}(\Omega) \cap V$.

As it was proven (in the previous report),

- $T^{1}(\Gamma)$ is a subspace of $\left\{\prod_{j \in \mathcal{N}} H^{1 / 2}\left(\Gamma_{j}\right)\right\}$,
- \Rightarrow any element of $T^{1}(\Gamma)$ can be denoted by $\left\{g_{j}\right\}_{j \in \mathcal{N}}$.

Since $g_{j}=0$ for $j \in \mathcal{D}$, it is known that

$$
\begin{equation*}
g_{j+1} \equiv g_{j} \text { at } S_{j} \text { for every } j \tag{1}
\end{equation*}
$$

Density result: Proof

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^{m}(\Gamma)$ is dense in $T^{1}(\Gamma)$,
- where $T^{m}(\Gamma)$ is the space of traces of elements of $H^{m}(\Omega) \cap V$.

As it was proven (in the previous report),

- $T^{1}(\Gamma)$ is a subspace of $\left\{\prod_{j \in \mathcal{N}} H^{1 / 2}\left(\Gamma_{j}\right)\right\}$,
- \Rightarrow any element of $T^{1}(\Gamma)$ can be denoted by $\left\{g_{j}\right\}_{j \in \mathcal{N}}$.

Since $g_{j}=0$ for $j \in \mathcal{D}$, it is known that

$$
\begin{equation*}
g_{j+1} \equiv g_{j} \text { at } S_{j} \text { for every } j \tag{1}
\end{equation*}
$$

As it was proven,

- $T^{m}(\Gamma)$ is a subspace of $\left\{\prod_{j \in \mathcal{N}} H^{m-1 / 2}\left(\Gamma_{j}\right)\right\}$ defined by

$$
\begin{equation*}
g_{j+1}\left(S_{j}\right)=g_{j}\left(S_{j}\right) \text { for every } j \tag{2}
\end{equation*}
$$

Density result: Proof

We characterize the condition (1) by

- the function $\sigma \mapsto g_{j+1}\left(x_{j}(\sigma)\right)-g_{j}\left(x_{j}(-\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$ near zero when $j \in \mathcal{N}^{2}$;
- the function $\sigma \mapsto g_{j+1}\left(x_{j}(\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$near zero when $j \in \mathcal{D}$ and $j+1 \in \mathcal{N}$;
- the function $\sigma \mapsto g_{j}\left(x_{j}(-\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$near zero when $j \in \mathcal{N}$ and $j+1 \in \mathcal{D}$.

Density result: Proof

We characterize the condition (1) by

- the function $\sigma \mapsto g_{j+1}\left(x_{j}(\sigma)\right)-g_{j}\left(x_{j}(-\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$ near zero when $j \in \mathcal{N}^{2}$;
- the function $\sigma \mapsto g_{j+1}\left(x_{j}(\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$near zero when $j \in \mathcal{D}$ and $j+1 \in \mathcal{N}$;
- the function $\sigma \mapsto g_{j}\left(x_{j}(-\sigma)\right)$ belongs to $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$near zero when $j \in \mathcal{N}$ and $j+1 \in \mathcal{D}$.

Then the density of $T^{m}(\Gamma)$ in $T^{1}(\Gamma)$ follows as
\triangleright the condition (2) is clearly fulfilled when $g_{j} \in \mathcal{D}\left(\mathbb{R}_{+}\right)$;
$\triangleright \mathcal{D}\left(\mathbb{R}_{+}\right)$is dense in $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$.

Second density result

In studying a mixed BVP for the Laplace equation on a bounded polygon
$\Omega \subset \mathbb{R}^{2}$ will be used a space of strong solutions
$V^{2}(\Omega)=\left\{u \in H^{2}(\Omega): \gamma_{j} u=0\right.$ on $\Gamma_{j}, j \in \mathcal{D}$ and $\gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right)=0$ on $\left.\Gamma_{j}, j \in \mathcal{N}\right\}$.

Theorem
The space $H^{m}(\Omega) \cap V^{2}(\Omega)$ is dense in $V^{2}(\Omega)$ for any $m>1$.

Density for strong solutions: Proof

Equivalent statement:
\star any continuous linear form on $V^{2}(\Omega)$ that vanishes on $V^{m}(\Omega)=H^{m}(\Omega) \cap V^{2}(\Omega)$, actually vanishes everywhere.

Density for strong solutions: Proof

Equivalent statement:

* any continuous linear form on $V^{2}(\Omega)$ that vanishes on $V^{m}(\Omega)=H^{m}(\Omega) \cap V^{2}(\Omega)$, actually vanishes everywhere.
It is shown before that
$\star H^{m}(\Omega)$ is a direct sum of $H_{0}^{m}(\Omega)$ and the image $Z^{m}(\Omega)$ of the operator $\gamma=\left\{\gamma_{j}\left(\frac{\partial^{\prime}}{\partial \nu_{j}^{\prime}}\right)\right\}_{1 \leq j \leq N, 0 \leq I \leq m-1}$.

Density for strong solutions: Proof

Equivalent statement:
\star any continuous linear form on $V^{2}(\Omega)$ that vanishes on $V^{m}(\Omega)=H^{m}(\Omega) \cap V^{2}(\Omega)$, actually vanishes everywhere.
It is shown before that
$\star H^{m}(\Omega)$ is a direct sum of $H_{0}^{m}(\Omega)$ and the image $Z^{m}(\Omega)$ of the operator $\gamma=\left\{\gamma_{j}\left(\frac{\partial^{\prime}}{\partial \nu_{j}^{\prime}}\right)\right\}_{1 \leq j \leq N, 0 \leq I \leq m-1}$.
One can represent a linear form on V as

$$
I(v)=\langle S, v-\rho \gamma v\rangle+\langle g, \gamma v\rangle,
$$

where $S \in H^{-m}(\Omega), g \in Z^{m}(\Gamma)^{*}, \rho$ is a right inverse of γ.

Density for strong solutions: Proof

Equivalent statement:
\star any continuous linear form on $V^{2}(\Omega)$ that vanishes on $V^{m}(\Omega)=H^{m}(\Omega) \cap V^{2}(\Omega)$, actually vanishes everywhere.
It is shown before that
$\star H^{m}(\Omega)$ is a direct sum of $H_{0}^{m}(\Omega)$ and the image $Z^{m}(\Omega)$ of the operator $\gamma=\left\{\gamma_{j}\left(\frac{\partial^{\prime}}{\partial \nu_{j}^{\prime}}\right)\right\}_{1 \leq j \leq N, 0 \leq I \leq m-1}$.
One can represent a linear form on V as

$$
I(v)=\langle S, v-\rho \gamma v\rangle+\langle g, \gamma v\rangle,
$$

where $S \in H^{-m}(\Omega), g \in Z^{m}(\Gamma)^{*}, \rho$ is a right inverse of γ.

- I vanishes on $V^{m}(\Omega) \Rightarrow I$ vanishes on $\mathcal{D}(\Omega)$
- $\Rightarrow\langle S, v\rangle=0$ on $\mathcal{D}(\Omega) \Rightarrow S=0$.

Density for strong solutions: Proof

I depends only on $\gamma v \Rightarrow$

- we need just to check that $Z^{m}(\Gamma)$ is dense in $Z^{2}(\Gamma)$,
- where $Z^{m}(\Gamma)$ is the space of traces of elements of $V^{m}(\Omega)$.

Density for strong solutions: Proof

I depends only on $\gamma v \Rightarrow$

- we need just to check that $Z^{m}(\Gamma)$ is dense in $Z^{2}(\Gamma)$,
- where $Z^{m}(\Gamma)$ is the space of traces of elements of $V^{m}(\Omega)$.

As it was proven, $Z^{2}(\Gamma)$ is a subspace of $\prod_{j} H^{3 / 2}\left(\Gamma_{j}\right) \times H^{1 / 2}\left(\Gamma_{j}\right)$, whose elements $\left\{g_{j}, h_{j}\right\}_{j \in \mathcal{N}}$ are defined by

$$
\begin{aligned}
& g_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{D} \\
& h_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{N} \\
& g_{j}\left(S_{j}\right)=g_{j+1}\left(S_{j}\right) \\
& g_{j}^{\prime} \equiv-g_{j+1}^{\prime} \cos \omega_{j}+h_{j+1} \sin \omega_{j} \text { at } S_{j} \text { for every } j \\
& h_{j} \equiv-h_{j+1} \cos \omega_{j}+g_{j+1}^{\prime} \sin \omega_{j} \text { at } S_{j} \text { for every } j
\end{aligned}
$$

Density for strong solutions: Proof

Lemma

The image of $H^{m}(\Omega)$ by the mapping

$$
u \mapsto\left\{\gamma_{j} u=g_{j}, \gamma_{j} \frac{\partial u}{\partial \nu_{j}}=h_{j}\right\}_{1 \leq j \leq N}
$$

is the subspace of $\prod_{j} H^{m-1 / 2}\left(\Gamma_{j}\right) \times H^{m-3 / 2}\left(\Gamma_{j}\right)$ defined by

$$
\begin{gather*}
g_{j}\left(S_{j}\right)=g_{j+1}\left(S_{j}\right) \tag{3}\\
g_{j}^{\prime}\left(S_{j}\right)=-g_{j+1}^{\prime}\left(S_{j}\right) \cos \omega_{j}+h_{j+1}\left(S_{j}\right) \sin \omega_{j} \tag{4}\\
h_{j}\left(S_{j}\right)=-h_{j+1}\left(S_{j}\right) \cos \omega_{j}+g_{j+1}^{\prime}\left(S_{j}\right) \sin \omega_{j} \tag{5}\\
-g_{j}^{\prime \prime}\left(S_{j}\right) \cos \omega_{j}-h_{j}^{\prime}\left(S_{j}\right) \sin \omega_{j}=-g_{j+1}^{\prime \prime}\left(S_{j}\right) \cos \omega_{j}+h_{j+1}^{\prime}\left(S_{j}\right) \sin \omega_{j} \tag{6}
\end{gather*}
$$

when $m \geq 4$ and

$$
-g_{j}^{\prime \prime} \cos \omega_{j}-h_{j}^{\prime} \sin \omega_{j} \equiv-g_{j+1}^{\prime \prime} \cos \omega_{j}+h_{j+1}^{\prime} \sin \omega_{j} \text { at } S_{j}
$$

when $m=3$.

Density for strong solutions: Proof

Then we describe $Z^{m}(\Gamma)$ as a subspace of $\prod_{j} H^{m-1 / 2}\left(\Gamma_{j}\right) \times H^{m-3 / 2}\left(\Gamma_{j}\right)$ defined by

$$
\begin{aligned}
& g_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{D} \\
& h_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{N}
\end{aligned}
$$

and (3), (4), (5), (6),

Density for strong solutions: Proof

Then we describe $Z^{m}(\Gamma)$ as a subspace of $\prod_{j} H^{m-1 / 2}\left(\Gamma_{j}\right) \times H^{m-3 / 2}\left(\Gamma_{j}\right)$ defined by

$$
\begin{aligned}
& g_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{D} \\
& h_{j}=0 \text { on } \Gamma_{j} \text { for } j \in \mathcal{N}
\end{aligned}
$$

and (3), (4), (5), (6),
Proving density of $Z^{m}(\Gamma)$ in $Z^{2}(\Gamma)$ is carried out by

- considering the conditions for g_{j}, h_{j} near each corner S_{j};
- applying density of $\mathcal{D}\left(\mathbb{R}_{+}\right)$in $\widetilde{H}^{1 / 2}\left(\mathbb{R}_{+}\right)$.

