Green's formula and density results

Nadir Bayramov

Seminar on Numerical Analysis

29 October, 2013

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Table of Contents

Green formula

Trace theorem Generalized Green formula

Density results

Density with boundary conditions Density in a space of strong solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

- extend trace theorem for polygonal domain Ω , when $u \notin H^2(\Omega)$
- corresponding generalization of Green's formula
- prove density results for spaces with boundary conditions (for polygonal domains)

Standard Green formulas

Theorem

Let Ω be a bounded Lipschitz open subset of $\mathbb{R}^n.$ Then for any $u,v\in H^1(\Omega)$

$$\int_{\Omega} v D_i u \ dx + \int_{\Omega} u D_i v \ dx = \int_{\Gamma} \gamma u \ \gamma v \ \nu^i \ d\sigma,$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

where $D_i = \frac{\partial}{\partial x_i}$ and ν^i is the *i*-th component of exterior unit normal vector ν .

Standard Green formulas

Theorem

Let Ω be a bounded Lipschitz open subset of $\mathbb{R}^n.$ Then for any $u,v\in H^1(\Omega)$

$$\int_{\Omega} v D_i u \, dx + \int_{\Omega} u D_i v \, dx = \int_{\Gamma} \gamma u \, \gamma v \, \nu^i \, d\sigma,$$

where $D_i = \frac{\partial}{\partial x_i}$ and ν^i is the *i*-th component of exterior unit normal vector ν .

• For $u \in H^1(\Omega)$, $v \in H^2(\Omega)$ we have 'half Green formula'

$$\int_{\Omega} u \triangle v \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Gamma} \gamma u \, \gamma \Big(\frac{\partial v}{\partial \nu} \Big) \, d\sigma$$

• for $u,v\in H^2(\Omega)$ we have the full Green formula

$$\int_{\Omega} u \triangle v \, dx - \int_{\Omega} v \triangle u \, dx = \int_{\Gamma} \gamma u \, \gamma \Big(\frac{\partial v}{\partial \nu} \Big) \, d\sigma - \int_{\Gamma} \gamma v \, \gamma \Big(\frac{\partial u}{\partial \nu} \Big) \, d\sigma.$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

Trace theorem: Formulation

Define

$$D(\triangle, L^2(\Omega)) = \{ v \in L^2(\Omega) \colon \triangle v \in L^2(\Omega) \},\$$

where $\triangle v$ is understood in the distributional sense. This is a Hilbert space for the norm

$$v\mapsto \left(\|v\|^2+\|\bigtriangleup v\|^2
ight)^{1/2}.$$

Similarly to [Lions-Magenes, 1968] one can prove that $H^2(\Omega)$ is dense in $D(\triangle, L^2(\Omega))$.

Trace theorem: Formulation

Define

$$D(\triangle, L^2(\Omega)) = \{ v \in L^2(\Omega) \colon \triangle v \in L^2(\Omega) \},\$$

where $\triangle v$ is understood in the distributional sense. This is a Hilbert space for the norm

$$v\mapsto \left(\|v\|^2+\|\bigtriangleup v\|^2
ight)^{1/2}.$$

Similarly to [Lions-Magenes, 1968] one can prove that $H^2(\Omega)$ is dense in $D(\triangle, L^2(\Omega))$.

Theorem

Let Ω be a bounded polygonal open subset of \mathbb{R}^2 . Then the mapping $v \mapsto \{\gamma_j v, \gamma_j \frac{\partial v}{\partial \nu_j}\}$, which is defined for $v \in H^2(\Omega)$, has a unique continuous extension as an operator

$$D(\triangle, L^2(\Omega)) o \widetilde{H}^{-1/2}(\Gamma_j) imes \widetilde{H}^{-3/2}(\Gamma_j).$$

The full Greeen formula implies for any $u, v \in H^2(\Omega)$

$$\left|\sum_{j}\left\{\int_{\Gamma_{j}}\gamma_{j}u \gamma_{j}\left(\frac{\partial v}{\partial \nu_{j}}\right) d\sigma - \int_{\Gamma_{j}}\gamma_{j}v \gamma_{j}\left(\frac{\partial u}{\partial \nu_{j}}\right) d\sigma\right\}\right| \leq K \|u\|_{2,\Omega},$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where K depends on v and can be chosen as $K = \left(\|v\|_{0,\Omega}^2 + \|\triangle v\|_{0,\Omega}^2 \right)^{1/2}.$

The full Greeen formula implies for any $u, v \in H^2(\Omega)$

$$\Big|\sum_{j}\Big\{\int_{\Gamma_{j}}\gamma_{j}u\ \gamma_{j}\Big(\frac{\partial v}{\partial \nu_{j}}\Big)\ d\sigma-\int_{\Gamma_{j}}\gamma_{j}v\ \gamma_{j}\Big(\frac{\partial u}{\partial \nu_{j}}\Big)\ d\sigma\Big\}\Big|\leq K\|u\|_{2,\Omega},$$

where *K* depends on *v* and can be chosen as $K = (\|v\|_{0,\Omega}^2 + \|\triangle v\|_{0,\Omega}^2)^{1/2}.$ For fixed *j*, consider

$$U = \{ u \in H^2(\Omega) \colon \gamma_k u = \gamma_k \left(\frac{\partial u}{\partial \nu_k} \right) = 0 \text{ on } \Gamma_k \text{ for all } k \neq j \}.$$

The full Greeen formula implies for any $u, v \in H^2(\Omega)$

$$\Big|\sum_{j}\Big\{\int_{\Gamma_{j}}\gamma_{j}u\;\gamma_{j}\Big(\frac{\partial v}{\partial \nu_{j}}\Big)\;d\sigma-\int_{\Gamma_{j}}\gamma_{j}v\;\gamma_{j}\Big(\frac{\partial u}{\partial \nu_{j}}\Big)\;d\sigma\Big\}\Big|\leq K\|u\|_{2,\Omega},$$

where *K* depends on *v* and can be chosen as $K = (\|v\|_{0,\Omega}^2 + \|\triangle v\|_{0,\Omega}^2)^{1/2}.$ For fixed *j*, consider

$$U = \{ u \in H^2(\Omega) \colon \gamma_k u = \gamma_k \left(\frac{\partial u}{\partial \nu_k} \right) = 0 \text{ on } \Gamma_k \text{ for all } k \neq j \}.$$

Then for any $u \in U$

$$\left|\int_{\Gamma_{j}} \gamma_{j} u \gamma_{j} \left(\frac{\partial v}{\partial \nu_{j}}\right) d\sigma - \int_{\Gamma_{j}} \gamma_{j} v \gamma_{j} \left(\frac{\partial u}{\partial \nu_{j}}\right) d\sigma\right| \leq K \|u\|_{2,\Omega}.$$

It is shown (in the previous report) that $u \mapsto \left\{ f_{j,0} = \gamma_j u, f_{j,1} = \gamma_j \left(\frac{\partial u}{\partial \nu_j} \right) \right\}$ maps U onto $\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$ defined by

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

a)
$$f_{j,0}(S_j) = f_{j,0}(S_{j-1}) = 0;$$

b) $\frac{\partial f_{j,0}}{\partial \tau_j} \equiv 0$ and $f_{j,1} \equiv 0$ at S_j and S_{j-1} .

It is shown (in the previous report) that $u \mapsto \left\{ f_{j,0} = \gamma_j u, f_{j,1} = \gamma_j \left(\frac{\partial u}{\partial \nu_j} \right) \right\}$ maps U onto $\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$ defined by

a)
$$f_{j,0}(S_j) = f_{j,0}(S_{j-1}) = 0;$$

b) $\frac{\partial f_{j,0}}{\partial \tau_j} \equiv 0$ and $f_{j,1} \equiv 0$ at S_j and S_{j-1} .

Remark

Recall that functions φ_j and φ_{j+1} defined on Γ_j and Γ_{j+1} respectively, are equivalent at S_j : $\varphi_j \equiv \varphi_{j+1}$, if

$$\int_0^{\delta_j} |\varphi_j(x_j(-\sigma)) - \varphi_{j+1}(x_j(\sigma))|^2 \, d\sigma/\sigma < +\infty.$$

When φ_j and φ_{j+1} are Hölder continuous near S_j , it follows that $\varphi_j(S_j) = \varphi_{j+1}(S_j)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Since the linear mapping $u \mapsto \left\{ \varphi = \gamma_j u, \ \psi = \gamma_j \left(\frac{\partial u}{\partial \nu_j} \right) \right\}$ is 'onto' and for any $(\varphi, \psi) \in \widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$ their prototype u uniformly satisfies $\|u\|_U = \|u\|_{2,\Omega} \leq C \|(\varphi, \psi)\|_{\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)},$

the following linear form

$$L(\varphi,\psi) = \int_{\Gamma_j} \varphi \gamma_j \left(\frac{\partial v}{\partial \nu_j}\right) \, d\sigma - \int_{\Gamma_j} \psi \gamma_j v \, d\sigma$$

うして ふゆう ふほう ふほう うらつ

is continuous on $\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$.

Since the linear mapping $u \mapsto \left\{ \varphi = \gamma_j u, \ \psi = \gamma_j \left(\frac{\partial u}{\partial \nu_j} \right) \right\}$ is 'onto' and for any $(\varphi, \psi) \in \widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$ their prototype u uniformly satisfies $\|u\|_U = \|u\|_{2,\Omega} \leq C \|(\varphi, \psi)\|_{\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)},$

the following linear form

$$L(\varphi,\psi) = \int_{\Gamma_j} \varphi \gamma_j \left(\frac{\partial v}{\partial \nu_j}\right) \, d\sigma - \int_{\Gamma_j} \psi \gamma_j v \, d\sigma$$

is continuous on $\widetilde{H}^{3/2}(\Gamma_j) \times \widetilde{H}^{1/2}(\Gamma_j)$.

Due to the density of $H^2(\Omega)$ in $D(\triangle, L^2(\Omega))$ and uniform boundedness of $L(\varphi, \psi)$ w.r.t. $K = \|v\|_{D(\triangle, L^2(\Omega))}$, there exists a (unique continuous) extension of $v \mapsto \{\gamma_j v, \gamma_j \frac{\partial v}{\partial \nu_i}\}$ as an operator

$$D(\triangle, L^2(\Omega)) o \widetilde{H}^{-1/2}(\Gamma_j) imes \widetilde{H}^{-3/2}(\Gamma_j).$$

(日) (伊) (日) (日) (日) (0) (0)

Generalizing Green formula

It is shown in [Lions-Magenes, 1968] that the full Green formula still holds for $v \in D(\triangle, L^2(\Omega))$ and $u \in H^2(\Omega)$ when

- Ω is bounded and has C^{∞} boundary;
- \int_{Γ} are understood as duality brackets.

Generalizing Green formula

It is shown in [Lions-Magenes, 1968] that the full Green formula still holds for $v \in D(\triangle, L^2(\Omega))$ and $u \in H^2(\Omega)$ when

- Ω is bounded and has C^{∞} boundary;
- \int_{Γ} are understood as duality brackets.

Problem of extending this result for polygonal Ω :

• \int_{Γ} as duality brackets are meaningful only if

$$\gamma_j u \in \widetilde{H}^{3/2}(\Gamma_j), \quad \gamma_j \left(\frac{\partial u}{\partial \nu_j}\right) \in \widetilde{H}^{1/2}(\Gamma_j)$$

ション ふゆ く 山 マ チャット しょうくしゃ

and this is not true for all $u \in H^2(\Omega)$.

Theorem for generalized Green formula

Theorem

Let Ω be a bounded polygonal open subset of \mathbb{R}^2 . Then for any $v \in D(\Delta, L^2(\Omega))$ and $u \in H^2(\Omega)$ such that

$$\gamma_j u \in \widetilde{H}^{3/2}(\Gamma_j), \quad \gamma_j \left(\frac{\partial u}{\partial \nu_j}\right) \in \widetilde{H}^{1/2}(\Gamma_j) \text{ for all } j,$$

we have

$$\int_{\Omega} u \triangle v \, dx - \int_{\Omega} v \triangle u \, dx = \sum_{j} \Big(\langle \gamma_{j} u, \gamma_{j} \big(\frac{\partial v}{\partial \nu_{j}} \big) \rangle - \langle \gamma_{j} v, \gamma_{j} \big(\frac{\partial u}{\partial \nu_{j}} \big) \rangle \Big).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem for generalized Green formula: Proof

The equality holds for any $u, v \in H^2(\Omega)$.

For any fixed u (that satisfies the conditions of the theorem) from the proof of trace theorem one can see that both sides of the equality are continuous in the norm of $D(\triangle, L^2(\Omega))$ w.r.t. v.

Then the statement follows from the density of $H^2(\Omega)$ in $D(\triangle, L^2(\Omega))$.

ション ふゆ アメリア メリア しょうくの

Other types of trace theorems

Assumption $v \in D(\triangle, L^2(\Omega))$ is made to ensure the continuity of

$$v\mapsto \int_{\Omega}u riangle v\,\,dx-\int_{\Omega}v riangle u\,\,dx$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

for $u \in H^2(\Omega)$. Since we have $u \in C(\overline{\Omega})$ (n = 2), we can just assume $v \in D(\triangle, L^1(\Omega)) = \{w \in L^2(\Omega) : \triangle w \in L^1(\Omega)\}.$

Other types of trace theorems

Assumption $v \in D(\triangle, L^2(\Omega))$ is made to ensure the continuity of

$$v\mapsto \int_{\Omega}u riangle v\,\,dx-\int_{\Omega}v riangle u\,\,dx$$

for $u \in H^2(\Omega)$. Since we have $u \in C(\overline{\Omega})$ (n = 2), we can just assume $v \in D(\triangle, L^1(\Omega)) = \{w \in L^2(\Omega) : \triangle w \in L^1(\Omega)\}.$

Theorem (Grisvard (1985))

Let Ω be a bounded polygonal open subset of \mathbb{R}^2 . Then $H^2(\Omega)$ is dense in $E(\Delta, L^p(\Omega)) = \{v \in H^1(\Omega) : \Delta v \in L^p(\Omega)\}$ (p > 1) and mapping $v \mapsto \gamma_j \left(\frac{\partial v}{\partial \nu_j}\right)$ has unique continuous extensions as an operator from $E(\Delta, L^p(\Omega))$ into $\widetilde{H}^{-1/2}(\Gamma_j)$. In addition, one has

$$\int_{\Omega} u \triangle v \, dx = -\int_{\Omega} \nabla u \cdot \nabla v \, dx + \sum_{j} \langle \gamma_{j} u, \gamma_{j} (\frac{\partial v}{\partial \nu_{j}}) \rangle$$

for any $v \in E(\triangle, L^p(\Omega))$, $u \in H^1(\Omega)$ such that $\gamma_j u \in \widetilde{H}^{1/2}(\Gamma_j)$ for all j.

Table of Contents

Green formula

Trace theorem Generalized Green formula

Density results

Density with boundary conditions Density in a space of strong solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation: density with boundary conditions

While analyzing homogeneous BVP

- one has to approximate Sobolev spaces with homogeneous boundary conditions by smoother functions with the same boundary conditions;
- in the case of smooth domains the corresponding density results are the consequences of trace results.

Motivation: density with boundary conditions

While analyzing homogeneous BVP

- one has to approximate Sobolev spaces with homogeneous boundary conditions by smoother functions with the same boundary conditions;
- in the case of smooth domains the corresponding density results are the consequences of trace results.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

In the case of polygons

- similar results are in general difficult to prove;
- we focus on the few cases of direct use.

For a mixed BVP for the Laplace equation on a bounded polygonal set $\Omega \subset \mathbb{R}^2$ we use

$$V = \{ u \in H^1(\Omega) \colon \gamma_j u = 0 \text{ on } \Gamma_j, \ j \in \mathcal{D} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

The space $H^m(\Omega) \cap V$ is dense in V for any m > 1.

We prove an equivalent statement:

* any continuous linear form on V that vanishes on $H^m(\Omega) \cap V$, actually vanishes everywhere.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

We prove an equivalent statement:

- * any continuous linear form on V that vanishes on $H^m(\Omega) \cap V$, actually vanishes everywhere.
- It is shown before that
 - * $H^1(\Omega)$ is a direct sum of $H^1_0(\Omega)$ and the image R of the trace operator $\gamma = \{\gamma_j\}_{1 \le j \le N}$ (more precisely, its isomorphic analogue).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

We prove an equivalent statement:

- * any continuous linear form on V that vanishes on $H^m(\Omega) \cap V$, actually vanishes everywhere.
- It is shown before that
- * $H^1(\Omega)$ is a direct sum of $H^1_0(\Omega)$ and the image R of the trace operator $\gamma = {\gamma_j}_{1 \le j \le N}$ (more precisely, its isomorphic analogue). One can represent a linear form on V as

$$I(\mathbf{v}) = \langle \mathbf{S}, \mathbf{v} - \rho \gamma \mathbf{v} \rangle + \langle \mathbf{g}, \gamma \mathbf{v} \rangle,$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where $S \in H^{-1}(\Omega)$, $g \in R^*$, ρ is a right inverse of γ .

We prove an equivalent statement:

- * any continuous linear form on V that vanishes on $H^m(\Omega) \cap V$, actually vanishes everywhere.
- It is shown before that
- * $H^1(\Omega)$ is a direct sum of $H^1_0(\Omega)$ and the image R of the trace operator $\gamma = {\gamma_j}_{1 \le j \le N}$ (more precisely, its isomorphic analogue). One can represent a linear form on V as

$$I(\mathbf{v}) = \langle \mathbf{S}, \mathbf{v} - \rho \gamma \mathbf{v} \rangle + \langle \mathbf{g}, \gamma \mathbf{v} \rangle,$$

where $S \in H^{-1}(\Omega)$, $g \in R^*$, ρ is a right inverse of γ .

- I vanishes on $H^m(\Omega) \cap V \Rightarrow I$ vanishes on $\mathcal{D}(\Omega)$
- $\Rightarrow \langle S, v \rangle = 0 \text{ on } \mathcal{D}(\Omega) \Rightarrow S = 0.$

- I depends only on $\gamma v \Rightarrow$
 - we need only to check that $T^m(\Gamma)$ is dense in $T^1(\Gamma)$,
 - where $T^m(\Gamma)$ is the space of traces of elements of $H^m(\Omega) \cap V$.

- I depends only on $\gamma v \Rightarrow$
 - we need only to check that $T^m(\Gamma)$ is dense in $T^1(\Gamma)$,
 - where T^m(Γ) is the space of traces of elements of H^m(Ω) ∩ V.

As it was proven (in the previous report),

- T¹(Γ) is a subspace of { ∏_{j∈N} H^{1/2}(Γ_j)},
- \Rightarrow any element of $T^1(\Gamma)$ can be denoted by $\{g_j\}_{j\in\mathcal{N}}$.

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^m(\Gamma)$ is dense in $T^1(\Gamma)$,
- where T^m(Γ) is the space of traces of elements of H^m(Ω) ∩ V.

As it was proven (in the previous report),

• $T^1(\Gamma)$ is a subspace of $\{\prod_{j\in\mathcal{N}}H^{1/2}(\Gamma_j)\},\$

• \Rightarrow any element of $T^1(\Gamma)$ can be denoted by $\{g_j\}_{j\in\mathcal{N}}$.

Since $g_j = 0$ for $j \in \mathcal{D}$, it is known that

$$g_{j+1} \equiv g_j$$
 at S_j for every j . (1)

I depends only on $\gamma v \Rightarrow$

- we need only to check that $T^m(\Gamma)$ is dense in $T^1(\Gamma)$,
- where T^m(Γ) is the space of traces of elements of H^m(Ω) ∩ V.

As it was proven (in the previous report),

• $T^1(\Gamma)$ is a subspace of $\{\prod_{j\in\mathcal{N}}H^{1/2}(\Gamma_j)\},\$

• \Rightarrow any element of $T^1(\Gamma)$ can be denoted by $\{g_j\}_{j\in\mathcal{N}}$.

Since $g_j = 0$ for $j \in \mathcal{D}$, it is known that

$$g_{j+1} \equiv g_j$$
 at S_j for every j . (1)

As it was proven,

• $T^m(\Gamma)$ is a subspace of $\left\{\prod_{j\in\mathcal{N}}H^{m-1/2}(\Gamma_j)\right\}$ defined by

$$g_{j+1}(S_j) = g_j(S_j)$$
 for every j . (2)

ション ふゆ く 山 マ チャット しょうくしゃ

We characterize the condition (1) by

- the function $\sigma \mapsto g_{j+1}(x_j(\sigma)) g_j(x_j(-\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{N}^2$;
- the function $\sigma \mapsto g_{j+1}(x_j(\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{D}$ and $j + 1 \in \mathcal{N}$;
- the function $\sigma \mapsto g_j(x_j(-\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{N}$ and $j + 1 \in \mathcal{D}$.

ション ふゆ く 山 マ チャット しょうくしゃ

We characterize the condition (1) by

- the function $\sigma \mapsto g_{j+1}(x_j(\sigma)) g_j(x_j(-\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{N}^2$;
- the function $\sigma \mapsto g_{j+1}(x_j(\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{D}$ and $j + 1 \in \mathcal{N}$;
- the function $\sigma \mapsto g_j(x_j(-\sigma))$ belongs to $\widetilde{H}^{1/2}(\mathbb{R}_+)$ near zero when $j \in \mathcal{N}$ and $j + 1 \in \mathcal{D}$.

Then the density of $T^m(\Gamma)$ in $T^1(\Gamma)$ follows as

- ▷ the condition (2) is clearly fulfilled when $g_j \in \mathcal{D}(\mathbb{R}_+)$;
- $\triangleright \mathcal{D}(\mathbb{R}_+)$ is dense in $\widetilde{H}^{1/2}(\mathbb{R}_+)$.

In studying a mixed BVP for the Laplace equation on a bounded polygon $\Omega\subset \mathbb{R}^2$ will be used a space of strong solutions

$$V^2(\Omega) = \Big\{ u \in H^2(\Omega) \colon \gamma_j u = 0 ext{ on } \Gamma_j, \, j \in \mathcal{D} ext{ and } \gamma_j ig(rac{\partial u}{\partial
u_j} ig) = 0 ext{ on } \Gamma_j, \, j \in \mathcal{N} \Big\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

The space $H^m(\Omega) \cap V^2(\Omega)$ is dense in $V^2(\Omega)$ for any m > 1.

Equivalent statement:

* any continuous linear form on $V^2(\Omega)$ that vanishes on $V^m(\Omega) = H^m(\Omega) \cap V^2(\Omega)$, actually vanishes everywhere.

Equivalent statement:

- * any continuous linear form on $V^2(\Omega)$ that vanishes on $V^m(\Omega) = H^m(\Omega) \cap V^2(\Omega)$, actually vanishes everywhere.
- It is shown before that

*
$$H^m(\Omega)$$
 is a direct sum of $H_0^m(\Omega)$ and the image $Z^m(\Omega)$ of the operator $\gamma = \{\gamma_j(\frac{\partial^l}{\partial \nu_j^l})\}_{1 \le j \le N, 0 \le l \le m-1}$.

Equivalent statement:

- * any continuous linear form on $V^2(\Omega)$ that vanishes on $V^m(\Omega) = H^m(\Omega) \cap V^2(\Omega)$, actually vanishes everywhere.
- It is shown before that
 - * $H^m(\Omega)$ is a direct sum of $H_0^m(\Omega)$ and the image $Z^m(\Omega)$ of the operator $\gamma = \{\gamma_j(\frac{\partial^l}{\partial \nu_j^l})\}_{1 \le j \le N, 0 \le l \le m-1}$.

One can represent a linear form on V as

$$I(\mathbf{v}) = \langle S, \mathbf{v} - \rho \gamma \mathbf{v} \rangle + \langle g, \gamma \mathbf{v} \rangle,$$

ション ふゆ く 山 マ チャット しょうくしゃ

where $S \in H^{-m}(\Omega)$, $g \in Z^m(\Gamma)^*$, ρ is a right inverse of γ .

Equivalent statement:

- * any continuous linear form on $V^2(\Omega)$ that vanishes on $V^m(\Omega) = H^m(\Omega) \cap V^2(\Omega)$, actually vanishes everywhere.
- It is shown before that
 - * $H^m(\Omega)$ is a direct sum of $H_0^m(\Omega)$ and the image $Z^m(\Omega)$ of the operator $\gamma = \{\gamma_j(\frac{\partial^l}{\partial \nu_j^l})\}_{1 \le j \le N, 0 \le l \le m-1}$.

One can represent a linear form on V as

$$I(\mathbf{v}) = \langle S, \mathbf{v} - \rho \gamma \mathbf{v} \rangle + \langle g, \gamma \mathbf{v} \rangle,$$

where $S \in H^{-m}(\Omega)$, $g \in Z^m(\Gamma)^*$, ρ is a right inverse of γ .

• I vanishes on $V^m(\Omega) \Rightarrow I$ vanishes on $\mathcal{D}(\Omega)$

•
$$\Rightarrow \langle S, v \rangle = 0 \text{ on } \mathcal{D}(\Omega) \Rightarrow S = 0.$$

I depends only on $\gamma v \Rightarrow$

- we need just to check that $Z^m(\Gamma)$ is dense in $Z^2(\Gamma)$,
- where $Z^m(\Gamma)$ is the space of traces of elements of $V^m(\Omega)$.

/ depends only on $\gamma v \; \Rightarrow \;$

- we need just to check that $Z^m(\Gamma)$ is dense in $Z^2(\Gamma)$,
- where Z^m(Γ) is the space of traces of elements of V^m(Ω).

As it was proven, $Z^2(\Gamma)$ is a subspace of $\prod_j H^{3/2}(\Gamma_j) \times H^{1/2}(\Gamma_j)$, whose elements $\{g_i, h_i\}_{i \in \mathcal{N}}$ are defined by

$$\begin{split} g_j &= 0 \text{ on } \Gamma_j \text{ for } j \in \mathcal{D} \\ h_j &= 0 \text{ on } \Gamma_j \text{ for } j \in \mathcal{N} \\ g_j(S_j) &= g_{j+1}(S_j) \\ g'_j &\equiv -g'_{j+1} \cos \omega_j + h_{j+1} \sin \omega_j \text{ at } S_j \text{ for every } j \\ h_j &\equiv -h_{j+1} \cos \omega_j + g'_{j+1} \sin \omega_j \text{ at } S_j \text{ for every } j \end{split}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Lemma

The image of $H^m(\Omega)$ by the mapping

$$u \mapsto \left\{\gamma_j u = g_j, \ \gamma_j \frac{\partial u}{\partial \nu_j} = h_j\right\}_{1 \le j \le N}$$

is the subspace of $\prod_{j} H^{m-1/2}(\Gamma_j) \times H^{m-3/2}(\Gamma_j)$ defined by

$$g_j(S_j) = g_{j+1}(S_j) \tag{3}$$

$$g'_{j}(S_{j}) = -g'_{j+1}(S_{j})\cos\omega_{j} + h_{j+1}(S_{j})\sin\omega_{j}$$
(4)

$$h_j(S_j) = -h_{j+1}(S_j) \cos \omega_j + g'_{j+1}(S_j) \sin \omega_j$$
(5)

$$-g_j''(S_j)\cos\omega_j - h_j'(S_j)\sin\omega_j = -g_{j+1}''(S_j)\cos\omega_j + h_{j+1}'(S_j)\sin\omega_j \quad (6)$$

when $m \ge 4$ and

$$-g_{j}''\cos\omega_{j} - h_{j}'\sin\omega_{j} \equiv -g_{j+1}''\cos\omega_{j} + h_{j+1}'\sin\omega_{j} \text{ at } S_{j}$$
when $m = 3$.

Then we describe $Z^m(\Gamma)$ as a subspace of $\prod_j H^{m-1/2}(\Gamma_j) \times H^{m-3/2}(\Gamma_j)$ defined by

> $g_j = 0 \text{ on } \Gamma_j \text{ for } j \in \mathcal{D}$ $h_j = 0 \text{ on } \Gamma_j \text{ for } j \in \mathcal{N}$

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

and (3), (4), (5), (6),

Then we describe $Z^m(\Gamma)$ as a subspace of $\prod_j H^{m-1/2}(\Gamma_j) \times H^{m-3/2}(\Gamma_j)$ defined by

> $g_j = 0 ext{ on } \Gamma_j ext{ for } j \in \mathcal{D}$ $h_j = 0 ext{ on } \Gamma_j ext{ for } j \in \mathcal{N}$

> > ション ふゆ く 山 マ ふ し マ うくの

and (3), (4), (5), (6),

Proving density of $Z^m(\Gamma)$ in $Z^2(\Gamma)$ is carried out by

- considering the conditions for g_i , h_i near each corner S_i ;
- applying density of $\mathcal{D}(\mathbb{R}_+)$ in $\widetilde{H}^{1/2}(\mathbb{R}_+)$.