01 Show that every linear second order partial differential equation

$$-(a(x) u'(x))' + b(x) u'(x) + c(x) u(x) = f(x),$$

with $a \in \mathcal{C}^1(0, 1)$ and $b, c \in \mathcal{C}(0, 1)$ can be rewritten in the form

$$\bar{a}(x) u''(x) + \bar{b}(x) u'(x) + c(x) u(x) = f(x),$$

and find suitable functions $\bar{a} \in C^1(0,1)$ and $\bar{b} \in C(0,1)$. Show also the reverse direction.

02 Derive the variational formulations of the two following boundary value problems:

(a)
$$\begin{cases} -u''(x) + u(x) = f(x) & \text{for } x \in (0,1) \\ u(0) = g_0 \\ u(1) = g_1 \\ \end{cases}$$

(b)
$$\begin{cases} -u''(x) + u(x) = f(x) & \text{for } x \in (0,1) \\ u(0) = g_0 \\ u'(1) = g_1 - \alpha_1 u(1) \end{cases}$$

In particular, specify the spaces V_g , and V_0 , the bilinear form $a(\cdot, \cdot)$, and the linear form $\langle F, \cdot \rangle$.

Hint for (b): Perform integration by parts as usual, substitute u'(1) due to the Robin boundary condition, and collect the bilinear and linear terms accordingly.

03 Consider the boundary value problem

$$-(a(x) u'(x))' = 1 \quad \text{for } x \in (0, 1),$$

$$u(0) = 0, \quad (1.1)$$

$$a(1) u'(1) = 0,$$

where $a(x) = \sqrt{2x - x^2}$. Justify that $u(x) = \sqrt{2x - x^2}$ is a *classical* solution of (1.1), i.e., $u \in X := \mathcal{C}^2(0, 1) \cap \mathcal{C}^1(0, 1] \cap \mathcal{C}[0, 1]$. Furthermore, show that

$$\int_0^1 |u'(x)|^2 \, dx = \infty \, .$$

Note: This example shows that $u \notin H^1(0,1)$, i.e., u is no weak solution.

04 Consider the piecewise constant coefficient function $a \in L^{\infty}(0, 1)$,

$$a(x) = \begin{cases} a_1 & \text{for } x \in \left[0, \frac{1}{2}\right], \\ a_2 & \text{for } x \in \left(\frac{1}{2}, 1\right], \end{cases}$$

with positive constants $a_1 \neq a_2$. Derive a variational formulation for the boundary value problem

$$-a(x) u''(x) = f(x) \quad \text{for } x \in (0,1) \setminus \{\frac{1}{2}\},\ u(0) = g_1, \quad u(1) = g_2,$$

together with the transmission conditions

$$u(\frac{1}{2}) = u(\frac{1}{2}), \qquad a_1 u'(\frac{1}{2}) = a_2 u'(\frac{1}{2}),$$

where $w(\frac{1}{2}^{-})$ and $w(\frac{1}{2}^{+})$ denote the left sided and right sided limit of a function w, respectively.

Hint: Integration by parts is only valid on subintervals!

05 Let the sequence $(u_k)_{k\in\mathbb{N}}$ of functions be defined by

$$u_k(x) = \begin{cases} 2x & \text{for } x \in \left[0, \frac{1}{2} - \frac{1}{2k}\right], \\ 1 - \frac{1}{2k} - 2k\left(x - \frac{1}{2}\right)^2 & \text{for } x \in \left(\frac{1}{2} - \frac{1}{2k}, \frac{1}{2} + \frac{1}{2k}\right), \\ 2(1 - x) & \text{for } x \in \left[\frac{1}{2} + \frac{1}{2k}, 1\right]. \end{cases}$$

Show that $u_k \in \mathcal{C}^1[0, 1]$. Let u be defined by

$$u(x) = \begin{cases} 2x & \text{for } x \in [0, \frac{1}{2}], \\ 2(1-x) & \text{for } x \in (\frac{1}{2}, 1]. \end{cases}$$

Find out if $u, u_k \in H^1(0, 1)$ or not and justify your answer. Calculate $||u_k - u||_{H^1(0,1)}$ (maybe with a little help from Mathematica/Maple) or find a suitable bound for it in order to show that

$$\lim_{k \to \infty} \|u_k - u\|_{H^1(0,1)} = 0.$$

Use these results to show that $(u_k)_{k \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{C}^1[0, 1]$ with respect to the H^1 -norm, but that there exists no limit in $\mathcal{C}^1[0, 1]$.

06 Show that there exists **no** function $w \in L^2(0,1)$ such that

$$\varphi(\frac{1}{2}) = \int_0^1 w(x)\varphi(x)dx$$
 for all $\varphi \in \mathcal{C}_0^\infty(0,1)$.

Hint: Consider the sequence of test functions

$$\varphi_n(x) := \begin{cases} e^{1 - \frac{1}{1 - n^2(1 - 2x)^2}} & \text{for } |1 - 2x| < \frac{1}{n}, \\ 0 & else \end{cases} \in \mathcal{C}_0^\infty(0, 1) & \text{for } n \in \mathbb{N}, n \ge 2. \end{cases}$$