PROSEMINAR

zur Vorlesung

"Mathematische Modelle in der Technik"

 $[\mathbf{PS\ VI}]$ 05.12. 2013 (Zeit : $10^{15} - 11^{45}$ Uhr; Raum : $\mathbf{KG\ 519}$): [20] - [22]

20 Man zeige, dass aus dem dynamischen Momentengleichgewicht $(14)_{\rm dyn}$ und aus dem dynamischen Kräftegleichgewicht $(15)_{\rm dyn}$ in differentieller Form die Symmetrie des Spannungstensors folgt, d.h. $(16)_{\rm dyn}$ (die Nummern beziehen sich auf die entsprechenden Formelnummern in der Vorlesung)!

2.2.2 Verzerrungszustand

Man zeige, dass die Verzerrungen $\varepsilon_{ij}(v) = 0$, i, j = 1, 2, 3, einer Verschiebungsfunktion $v = (v_1, v_2, v_3)^T \in [C^2(\Omega)]^3$ genau dann verschwinden, wenn $v \in \mathcal{R}$ eine Starrkörperverschiebung ist, wobei der Unterraum $\mathcal{R} := \{v(x) = a \times x + b : a, b \in \mathbb{R}^3\}$ der Starrkörperverschiebungen durch die Vektoren

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -x_2 \\ x_1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -x_3 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_3 \\ 0 \\ -x_1 \end{pmatrix}$$

aufgespannt wird.

[22] Zeigen Sie, dass die Winkeländerung φ_{kl} $(k \neq l)$ zwischen den Linienelementen dx_k und dx_l durch die Formel

$$\sin \varphi_{kl} = \frac{2e_{kl}}{\sqrt{1 + 2e_{kk}}\sqrt{1 + 2e_{ll}}}$$

gegeben ist (Hinweis: Berechnen Sie zunächst den Kosinus des Winkels ψ zwischen den defomierten Linienelementen dx'_k und dx'_l)!