Convergence result for the method of steepest descent

Since A is self-adjoint w.r.t. (\cdot, \cdot) , the bilinear form

$$(y, z)_A := (Ay, z)$$

is an inner product. The corresponding norm $\|y\|_A := \sqrt{(y, y)_A}$ is called **energy norm**.

Lemma 1.58 The method of steepest descent converges q-linearly with

$$\|x_{k+1} - x\|_A \ \le \ q \, \|x_k - x\|_A$$

where $q = rac{\kappa-1}{\kappa+1}$ and $\kappa = rac{\mu_2}{\mu_1}$ for $\mu_1 \leq \lambda_{\min}(A), \ \mu_2 \geq \lambda_{\max}(A)$.

Proof: (1) Auxiliary identity for arbitrary $y \in \mathbb{R}^n$:

$$\begin{aligned} \|y - x\|_A^2 &= (Ay, y) - 2(Ax, y) + (Ax, x) = (Ay, y) - 2(\underbrace{Ax}_{=b} x) - (Ax, x) + 2(\underbrace{Ax}_{=b}, x) \\ &= (Ay, y) - 2(b, y) - [(Ax, x) - 2(b, x)] = 2[J_A(y) - J_A(x)] \end{aligned}$$

(2) After k steps in the method of steepest descent, we perform one hypothetical step of Richardson's method:

$$\widetilde{x}_{k+1} := x_k + \tau r_k = x_k + \tau p_k$$

with the optimal parameter τ .

(3) We use Lemma 1.47 to analyze the hypothetical Richardson step. It is easily seen that A is self-adjoint w.r.t. $(\cdot, \cdot)_A$ and that

 $\mu_{1}(y, y) \leq (A y, y) \leq \mu_{2}(y, y) \qquad \forall y \in \mathbb{R}^{n}$ $\stackrel{\text{Lemma 1.49}}{\longleftrightarrow} \qquad \mu_{1} \leq \lambda_{\min}(A), \quad \mu_{2} \geq \lambda_{\max}(A)$ $\iff \quad \mu_{1}(y, y)_{A} \leq (A y, y)_{A} \leq \mu_{2}(y, y)_{A} \qquad \forall y \in \mathbb{R}^{n}$ $1.47 \text{ (with } \|\cdot\| \mapsto \|\cdot\|_{A} \text{) yields:}$

Hence, Lemma 1.47 (with $\|\cdot\| \mapsto \|\cdot\|_A$) yields:

$$\|\widetilde{x}_{k+1} - x\|_A \le q \|x_k - x\|_A$$
 where $q = \frac{\kappa - 1}{\kappa + 1}$ and $\kappa = \frac{\mu_2}{\mu_1}$

(4) Recall that x_{k+1} is the next step in the method of steepest descent. Because of the optimal choice of α_k , we have $J_A(x_{k+1}) \leq J_A(\tilde{x}_{k+1})$. Therefore, with the identity of Part (1):

$$\begin{aligned} \|x_{k+1} - x\|_A^2 &= 2[J_A(x_{k+1}) - J_A(x)] \\ &\leq 2[J_A(\widetilde{x}_{k+1}) - J_A(x)] = \|\widetilde{x}_{k+1} - x\|_A^2 \leq q^2 \|x_k - x\|_A^2 \end{aligned}$$

This concludes the proof.

Remark 1.59

- 1. The method of steepest descent converges as fast as Richardson's method but does not need a-priori information μ_1 , μ_2 or the choice of the damping parameter τ . The (optimal) stepsize α_k is computed automatically using just r_k and A.
- 2. One can show that the method of steepest descent converges in general not faster than Richardson's method (with $\tau = \tau_{opt}$).
- 3. The statement of Lemma 1.58 only holds for the energy norm $\|\cdot\|_A$!