
Convergence Analysis of the Improved Euler Method
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Stability analysis

We show that (13) (f Lipschitz, constant L) implies (18) (φ Lipschitz, constant Λ):
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Now Theorem 2.29 implies: improved Euler is stable.

Consistency analysis

(a) Classical consistency analysis of the local error by Taylor expansion
For simplicity assume that n = 1 and that f (and therefore also u) is sufficiently smooth
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(b) Estimate of the consistency error
One can show that under appropriate smoothness assumptions on f ,

∃K > 0 : ‖ψτ (t)‖Yτ ≤ K τ 2

i.e., the improved Euler method has consistency order 2 (in the sense of Def. 2.25).

Convergence now follows from Lemma 2.27 (stability+consistency =⇒ convergence):
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