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up € R" given
uinr = w47 £+ 3w+ 5 ()

-

=¢(tj, uj, 75)

Stability analysis
We show that (13) (f Lipschitz, constant L) implies (18) (¢ Lipschitz, constant A):
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Now Theorem 2.29 implies: improved Euler is stable.
Consistency analysis

(a) Classical consistency analysis of the local error by Taylor expansion
For simplicity assume that n = 1 and that f (and therefore also u) is sufficiently smooth
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(b) Estimate of the consistency error
One can show that under appropriate smoothness assumptions on f,
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i.e., the improved Euler method has consistency order 2 (in the sense of Def. 2.25).

Convergence now follows from Lemma 2.27 (stability+consistency = convergence):

||67-||X.r S 6L(1+T[3aXL)TK7-2



