Convergence Analysis of the Improved Euler Method

$$
\begin{aligned}
& u_{0} \in \mathbb{R}^{n} \text { given } \\
& u_{j+1}=u_{j}+\tau_{j} \underbrace{f\left(t_{j}+\frac{\tau_{j}}{2}, u_{j}+\frac{\tau_{j}}{2} f\left(t_{j}, u_{j}\right)\right)}_{=\phi\left(t_{j}, u_{j}, \tau_{j}\right)}
\end{aligned}
$$

Stability analysis

We show that (13) (f Lipschitz, constant L) implies (18) (ϕ Lipschitz, constant Λ):

$$
\begin{aligned}
\|\phi(t, v, \tau)-\phi(t, w, \tau)\| & =\| f\left(t+\frac{\tau}{2}, v+\frac{\tau}{2} f(t, v)-f\left(t+\frac{\tau}{2}, w+\frac{\tau}{2} f(t, w) \|\right.\right. \\
& \stackrel{(13)}{\leq} L\left\|v+\frac{\tau}{2} f(t, v)-v-\frac{\tau}{2} f(t, w)\right\| \\
& \leq L[\|v-w\|+\frac{\tau}{2} \underbrace{\|(t, v)-f(t, w)\|}_{\substack{(13) \\
\leq L\|v-w\|}} \\
& \leq L\left(1+\frac{\tau}{2} L\right)\|v-w\| \leq \underbrace{L\left(1+\frac{\tau_{\max }^{2}}{2} L\right)}_{=: \Lambda}\|v-w\|
\end{aligned}
$$

Now Theorem 2.29 implies: improved Euler is stable.

Consistency analysis

(a) Classical consistency analysis of the local error by Taylor expansion

For simplicity assume that $n=1$ and that f (and therefore also u) is sufficiently smooth

$$
\begin{aligned}
d_{\tau}(t+\tau)= & u(t+\tau)-[u(t)+\tau \phi(t, u(t), \tau)] \\
= & u(t+\tau)-u(t)-\tau f\left(t+\frac{\tau}{2}, u(t)+\frac{\tau}{2} f(t, u(t))\right) \\
= & u(t)+\tau u^{\prime}(t)+\frac{\tau^{2}}{2} u^{\prime \prime}(t)+\frac{\tau^{3}}{6} u^{\prime \prime \prime}(t)+\mathcal{O}\left(\tau^{4}\right)-u(t) \\
& -\tau\left[\left(f+\frac{\tau}{2} f_{t}+\frac{\tau}{2} f_{u} f+\frac{\tau^{2}}{4} f_{t t}+\frac{\tau^{2}}{2} f_{t u} f+\frac{\tau^{2}}{4} f_{u u} f^{2}\right)_{(t, u(t))}+\mathcal{O}\left(\tau^{3}\right)\right] \\
= & \tau[\underbrace{u^{\prime}(t)-f(t, u(t))}_{=0}]+\frac{\tau^{2}}{2}[\underbrace{u^{\prime \prime}(t)-\left(f_{t}-f_{u} f\right)_{(t, u(t))}}_{=(*)=0}]+ \\
& +\tau^{3}\left[\frac{1}{6} u^{\prime \prime \prime}(t)-\frac{1}{4}\left(f_{t t}+2 f_{\text {tu }} f+f_{u u} f^{2}\right)_{(t, u(t))}\right]+\mathcal{O}\left(\tau^{4}\right)
\end{aligned}
$$

where

$$
0=\frac{d}{d t}\left[u^{\prime}(t)-f(t, u(t))\right]=u^{\prime \prime}(t)-(f_{t}(t, u(t))+f_{u}(t, u(t)) \underbrace{u^{\prime}(t)}_{=f(t, u(t))})=(*)
$$

(b) Estimate of the consistency error

One can show that under appropriate smoothness assumptions on f,

$$
\exists K>0:\left\|\psi_{\tau}(t)\right\|_{Y_{\tau}} \leq K \tau^{2}
$$

i.e., the improved Euler method has consistency order 2 (in the sense of Def. 2.25).

Convergence now follows from Lemma 2.27 (stability + consistency \Longrightarrow convergence):

$$
\left\|e_{\tau}\right\|_{X_{\tau}} \leq e^{L\left(1+\frac{\tau_{\max }}{2} L\right) T} K \tau^{2}
$$

