The fixed point iteration behind the Lax-Milgram proof

Recall that for suitable τ and for arbitrary initial values $u_{0} \in V$, the fixed point iteration

$$
\begin{equation*}
u_{k+1}=\psi_{\tau}\left(u_{k}\right)=u_{k}-\tau \mathcal{R}\left(G-B u_{k}\right) \tag{13}
\end{equation*}
$$

converges to the solution $u \in W$ of

$$
\begin{equation*}
b(u, v)=\langle G, v\rangle \quad \forall v \in W \tag{11}
\end{equation*}
$$

We decode one iteration step of (13):

1. Form the residual $R_{k}:=G-B u_{k} \in W^{*}$
2. Form the correction $w_{k}:=\mathcal{R} R_{k} \quad \in W$
3. Form the next approximant $u_{k+1}:=u_{k}+\tau w_{k}$

In Step 2, we need Riesz' isomorphism $\mathcal{R}: W^{*} \rightarrow W$. Recall, however, that Riesz' proof is non-constructive.

We rewrite Step 2 using the definitions of \mathcal{R} and \mathcal{I} :

$$
\begin{array}{rlrl}
& w_{k} & =\mathcal{R}\left(G-B u_{k}\right) \\
\stackrel{\mathcal{I}-1}{\mathcal{R}^{-1}} \boldsymbol{\mathcal { I }} & w_{k} & =G-B u_{k} \\
\Longleftrightarrow & \left\langle\mathcal{I} w_{k}, v\right\rangle & =\langle G, v\rangle-\left\langle B u_{k}, v\right\rangle \quad \forall v \in W \\
& \Longleftrightarrow & \left(w_{k}, v\right)_{W} & =\langle G, v\rangle-b\left(u_{k}, v\right) \quad \forall v \in W
\end{array}
$$

Hence, Step 2 is equivalent to the variational problem:

$$
\begin{equation*}
\text { Find } w_{k} \in W: \quad\left(w_{k}, v\right)_{W}=\underbrace{\langle G, v\rangle-b\left(u_{k}, v\right)}_{=\left\langle R_{k}, v\right\rangle} \quad \forall v \in W \text {. } \tag{14}
\end{equation*}
$$

"Unfortunately", for our concrete setting with the PDE background $(b \mapsto a$, $G \mapsto \widehat{F}, W \mapsto V_{0}$), Problem (14) corresponds to a boundary value problem of a PDE (exercise/Tutorial: find out which one). Therefore, carrying out step 2 is (almost) as difficult as solving the original problem (6).

Conclusion: So far, the fixed point iteration (13) is only of theoretical interest; it cannot be turned into a numerical scheme directly. However, we will be able to reuse the ideas from above in later sections.

