Definition 1.48

Let (\cdot, \cdot) be an inner product in \mathbb{R}^{n} with associated norm $\|\cdot\|$ and let $A \in \mathbb{R}^{n \times n}$.

1. A is self-adjoint w.r.t. (\cdot, \cdot) iff

$$
(A y, z)=(y, A z) \quad \forall y, z \in \mathbb{R}^{n}
$$

Note: A is self-adjoint w.r.t. $(\cdot, \cdot)_{\ell^{2}}$ (Euclidean inner product)
$\Longleftrightarrow A$ is symmetric $\left(A=A^{\top}\right)$.
2. The spectrum of A (the finite set of eigenvalues) is defined by

$$
\sigma(A):=\left\{\lambda \in \mathbb{C}: \exists x \in \mathbb{C}^{n} \backslash\{0\}: A x=\lambda x\right\}
$$

If A is self-adjoint w.r.t. (\cdot, \cdot), then $\sigma(A) \subset \mathbb{R}$. We define

$$
\lambda_{\min }(A):=\min _{\lambda \in \sigma(A)} \lambda, \quad \lambda_{\max }(A):=\max _{\lambda \in \sigma(A)} \lambda .
$$

3. Let A be self-adjoint w.r.t. (\cdot, \cdot).
(a) A is positive semi-definite $(A \geq 0)$ iff $\quad(A y, y) \geq 0 \quad \forall y \in \mathbb{R}^{n}$
(b) A is positive definite $\quad(A>0)$ iff $\quad(A y, y)>0 \quad \forall y \in \mathbb{R}^{n} \backslash\{0\}$

Lemma 1.49

(i) $A \geq 0 \quad \Longleftrightarrow \quad \forall \lambda \in \sigma(A): \lambda \geq 0 \quad \Longleftrightarrow \quad \lambda_{\text {min }}(A) \geq 0$
(ii) $A>0 \quad \Longleftrightarrow \quad \forall \lambda \in \sigma(A): \lambda>0 \quad \Longleftrightarrow \quad \lambda_{\text {min }}(A)>0$
(iii) $\lambda_{\min }(A)=\inf _{y \in \mathbb{R}^{n} \backslash\{0\}} \underbrace{\frac{(A y, y)}{(y, y)}}_{\text {Rayleigh quotient }} \quad \lambda_{\max }(A)=\sup _{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{(A y, y)}{(y, y)}$

Proof: (i), (ii) easy, (iii): exercise
Lemma 1.50 If A is self-adjoint and positive definite then

$$
\|A\|=\sup _{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{|(A y, y)|}{(y, y)}=\lambda_{\max }(A), \quad\left\|A^{-1}\right\|=\frac{1}{\lambda_{\min }(A)}
$$

Hence, the condition number $\kappa(A):=\|A\|\left\|A^{-1}\right\|=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$.
Proof: Since A is self-adjoint,

$$
\|y\|=\sup _{y \in \mathbb{R}^{n} \backslash\{0\}} \frac{|(A y, y)|}{(y, y)} .
$$

Since A is positive definite, $|(A y, y)|=(A y, y)$. With Lemma 1.49 (iii), this implies $\|A\|=\lambda_{\max }(A)$. The properties of A imply now that A^{-1} indeed exists and is self adjoint w.r.t. (.,.). From the fact $\lambda \in \sigma(A) \Longleftrightarrow \lambda^{-1} \in \sigma\left(A^{-1}\right)$, it follows that $\left\|A^{-1}\right\|=\lambda_{\max }\left(A^{-1}\right)=1 / \lambda_{\min }(A)$.

Lemma 1.51 Let A and C be self-adjoint w.r.t. (\cdot, \cdot) and let $C>0$.
Then $C^{-1} A$ is self-adjoint w.r.t. the inner product

$$
(y, z)_{C}:=(C y, z) .
$$

