Direct Solvers for FEM systems

For the d-dimensional model problem with an analogous node numbering as in Example 1.43,

$$
K_{h} \in \mathbb{R}^{n_{h} \times n_{h}}, \quad n_{h}=\mathcal{O}\left(h^{-d}\right), \quad \text { band width } \mathcal{O}\left(h^{-(d-1)}\right) .
$$

Gauss ($L U$ factorization) exploiting band structure:

	$d=1$	$d=2$	$d=3$
operations	$\mathcal{O}\left(n_{h}\right)$	$\mathcal{O}\left(n_{h}^{2}\right)$	$\mathcal{O}\left(n_{h}^{7 / 3}\right)$
memory for storing L, U	$\mathcal{O}\left(n_{h}\right)$	$\mathcal{O}\left(n_{h}^{3 / 2}\right)$	$\mathcal{O}\left(n_{h}^{5 / 3}\right)$

The huge memory consumption stems from the fact that although K_{h} is sparse, the factors L, U are not. This phenomenon is called fill-in.

Question: Are there better numberings that reduce the memory complexity?
Answer: Yes. The optimal reordering can even be computed in optimal complexity. However, the factorization of the reordered system is still not optimal:

Optimal reordering and Gauss exploiting band structure:

	$d=1$	$d=2$	$d=3$
operations	$\mathcal{O}\left(n_{h}\right)$	$\mathcal{O}\left(n_{h}^{3 / 2}\right)$	$\mathcal{O}\left(n_{h}^{2}\right)$

For Poisson's equation and structured grids (like in Example 1.43), the 2D complexity can even be shown to be $\mathcal{O}\left(n_{h} \log ^{\alpha}\left(n_{h}\right)\right)$ (quasi-optimal). In 3D, the quadratic behavior is sharp.

Performance Study. The following graphs show the performance of the solver package PARDISO (embedded in the Intel Math Kernel library) for the 2D/3D model problem.

The computations were carried out on a notebook with an Intel Core i5-520M processor (2.40 GHz) and 8 GByte RAM.

The curves 'factorize' correspond to the CPU times needed for computing the factors L and U, the curves 'solve' correspond to the CPU time needed for solving the two triangular systems with L and U. The plots use a double-logarithmic scale in order to show the almost linear behavior in 2 D and the quadratic one in 3 D .

We see that the solution of 3D problems is soon problematic. The problem with 100 nodes in each direction ($n_{h} \approx 10^{6}$) could not be solved (within the given RAM of 8 GByte).

