Comparison:

FEM system $K_h \underline{u}_h = \underline{f}_h$ for quasi-uniform mesh, d-dimensional model problem

operations	d = 1	d=2	d = 3
Gauss, optimal reordering, band structure	$\mathcal{O}(n_h)$	$\mathcal{O}(n_h^{3/2})$	$\mathcal{O}(n_h^2)$
method of steepest descent	$\mathcal{O}(n_h^3)$	$\mathcal{O}(n_h^2)$	$\mathcal{O}(n_h^{5/3})$
CG	$\mathcal{O}(n_h^2)$	$\mathcal{O}(n_h^{3/2})$	$\mathcal{O}(n_h^{4/3})$

Implementation of CG

Lemma 1.63 implies

(i)
$$\alpha_k = \frac{(r_k, p_k)}{(Ap_k, p_k)} = \frac{(r_k, r_k)}{(Ap_k, p_k)}$$

(ii) $\alpha_{k-1}(r_k, Ap_{k-1}) = (r_k, \underbrace{\alpha_{k-1}Ap_{k-1}}_{-r_k+r_{k-1}}) = -(r_k, r_k)$

(iii)
$$\beta_{k-1} = -\frac{(r_k, Ap_{k-1})}{(Ap_{k-1}, p_{k-1})} \stackrel{(ii)}{=} \frac{(r_k, r_k)}{\alpha_{k-1}(Ap_{k-1}, p_{k-1})} \stackrel{(i)}{=} \frac{(r_k, r_k)}{(r_{k-1}, r_{k-1})}$$

Algorithm 1.66 (CG)

 $\begin{aligned} x_{0} & \text{given} \\ r_{0} = b - A x_{0} \\ k = 0 \\ \text{repeat} \\ p_{k} = \begin{cases} r_{0} & \text{if } k = 0 \\ r_{k} + \beta_{k-1} p_{k} & \text{with } \beta_{k-1} = \frac{(r_{k}, r_{k})}{(r_{k-1}, r_{k-1})} & \text{else} \end{cases} \\ r_{k+1} = x_{k} + \alpha_{k} p_{k} & \text{with } \alpha_{k} = \frac{(r_{k}, p_{k})}{(A p_{k}, p_{k})} \\ r_{k+1} = r_{k} - \alpha_{k} A p_{k} & (= b - A x_{k+1}) \\ k = k + 1 \\ \text{until stopping criterion fulfilled, e.g. } \|r_{k}\| \leq \varepsilon \|r_{0}\| \end{aligned}$