```
Algorithm 1: Richardson's method
    \(\boldsymbol{x}_{0}\) given
    \(r_{0}=b-A x_{0}\)
    \(\boldsymbol{k}=0\)
    repeat
```

```
\(\boldsymbol{p}_{k}=\boldsymbol{r}_{k}\)
```

$\boldsymbol{p}_{k}=\boldsymbol{r}_{k}$
$\alpha_{k}=\tau$
$\alpha_{k}=\tau$
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$
$r_{k+1}=r_{k}-\alpha_{k} \boldsymbol{A} p_{k} \quad=b-\boldsymbol{A} \boldsymbol{x}_{k+1}$
$r_{k+1}=r_{k}-\alpha_{k} \boldsymbol{A} p_{k} \quad=b-\boldsymbol{A} \boldsymbol{x}_{k+1}$
$\boldsymbol{k}=\boldsymbol{k}+\mathbf{1}$

```
\(\boldsymbol{k}=\boldsymbol{k}+\mathbf{1}\)
```

until stopping criterion fulfilled, e.g. $\left\|\boldsymbol{r}_{\boldsymbol{k}}\right\|_{\ell^{2}} \leq \varepsilon\left\|\boldsymbol{r}_{0}\right\|_{\ell^{2}}$

```
Algorithm 2: Method of steepest descent
    \(\boldsymbol{x}_{0}\) given
    \(r_{0}=b-A x_{0}\)
    \(k=0\)
    repeat
        \(\boldsymbol{p}_{\boldsymbol{k}}=\boldsymbol{r}_{\boldsymbol{k}}\)
        \(\alpha_{k}=\frac{\left(r_{k}, p_{k}\right)}{\left(p_{k}, A p_{k}\right)}\)
        \(x_{k+1}=x_{k}+\alpha_{k} p_{k}\)
        \(r_{k+1}=r_{k}-\alpha_{k} A p_{k} \quad=b-A x_{k+1}\)
        \(\boldsymbol{k}=\boldsymbol{k}+1\)
    until stopping criterion fulfilled, e.g. \(\left\|\boldsymbol{r}_{\boldsymbol{k}}\right\|_{\ell^{2}} \leq \boldsymbol{\varepsilon}\left\|\boldsymbol{r}_{0}\right\|_{\ell^{2}}\)
```

```
Algorithm 3: Conjugate gradient method
    \(\boldsymbol{x}_{0}\) given
    \(r_{0}=b-A x_{0}\)
    \(k=0\)
    repeat
        if \(k=0\) then
        \(\boldsymbol{p}_{k}=\boldsymbol{r}_{\boldsymbol{k}}\)
        else
        \(\boldsymbol{\beta}_{k-1}=-\frac{\left(r_{k}, \boldsymbol{A} p_{k-1}\right)}{\left(p_{k-1}, A p_{k-1}\right)}\)
        \(p_{k}=r_{k}+\beta_{k-1} p_{k-1}\)
            end
            \(\alpha_{k}=\frac{\left(r_{k}, p_{k}\right)}{\left(p_{k}, A p_{k}\right)}\)
            \(\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{\alpha}_{\boldsymbol{k}} \boldsymbol{p}_{\boldsymbol{k}}\)
            \(r_{k+1}=r_{k}-\alpha_{k} A p_{k} \quad=b-A x_{k+1}\)
            \(k=k+1\)
    until stopping criterion fulfilled, e.g. \(\left\|\boldsymbol{r}_{\boldsymbol{k}}\right\|_{\ell^{2}} \leq \varepsilon\left\|\boldsymbol{r}_{0}\right\|_{\ell^{2}}\)
```

