70 Show the following estimate from the lecture:

$$\frac{1}{\tau_j} \int_{t_j}^{t_{j+1}} (u'(s), v) \, ds - ((1-\theta) \, u'(t_j) + \theta \, u'(t_{j+1}), v) \\ \leq \int_{t_j}^{t_{j+1}} |(u''(\sigma), v)| \, d\sigma \qquad \forall u \in C^2 \, \forall \theta \in [0, 1]$$

71 Derive the stability function R(z) of the θ -method,

$$R(z) = 1 + \frac{z}{1 - \theta z}$$

Then determine the stability region

$$S = \{ z \in \mathbb{C} : |R(z)| \le 1 \}$$

for the cases $0 \le \theta < 1/2$, $\theta = 1/2$ and $1/2 < \theta \le 1$ separately and give center and radius of the corresponding circle (see also your lecture notes).

Hint: You may use e.g. Mathematica to ease these computations.

[72] Consider the 1D model problem with a Dirichlet boundary condition in x = 0. The entries of the mass matrix,

$$[M_h]_{i,j} = \int_0^1 \varphi_j(x)\varphi_i(x)dx \; ,$$

can be approximated by the trapezoidal rule, giving an approximation

$$[\bar{M}_h]_{i,j} := \sum_{k=1}^{n_h} \frac{h_k}{2} \left(\varphi_j(x_{k-1}) \varphi_i(x_{k-1}) + \varphi_j(x_k) \varphi_i(x_k) \right) \; .$$

Show:

$$- \overline{M}_h \text{ is diagonal} - [\overline{M}_h]_{i,i} = \sum_{j=1}^{n_h} [M_h]_{i,j} \qquad \text{for } i \ge 2.$$

73 Write functions or overload operators to implement

- A copy constructor or copy operator for SMatrix
- The multiplication of a matrix with a scalar
- The addition of two matrices

such that you can compute a Matrix $A = M_h + \tau \theta K_h$.

74 Write a function which implements one step of the θ - method, following the interface

```
void thetaMethod(double theta, double tau,
const Vector& f_old, const Vector& f_new,
const SMatrix& M, const SMatrix& K,
const Vector& u, Vector& u_new)
```

where

theta ... parameter θ tau ... time step size τ_j f_old ... load vector at time t_j f_new ... load vector at time t_{j+1} M,K ... mass- and stiffness matrix, respectively

 $u,u_new \dots$ solution vectors at t_i and t_{i+1} , respectively

Hint: Use your direct solver for tridiagonal matrices to compute $\underline{\phi}_{h,j+1}$ in

$$[M_h + \tau \theta K_h] \underline{\phi}_{h,j+1} = (1 - \theta) \underline{f}_h(t_j) + \theta \underline{f}_h(t_{j+1}) - K_h \underline{u}_{h,j} .$$

The new solution is given by

$$\underline{u}_{h,j+1} = \underline{u}_{h,j} + \tau_j \underline{\phi}_{h,j+1}$$

[75] Solve the parabolic problem in exercise 65+66 with the θ - method for fixed time steps τ and a uniform FEM discretization in space with step size h (so, $n_h + 1 = 1/h + 1$ nodes!). Compare the results of explicit ($\theta = 0$) and implicit ($\theta = 1$) Euler and the implicit trapezoidal rule ($\theta = 1/2$) for different values of h and τ on the time interval [0, T] = [0, 1]. Compute the l_2 -norm of the solution vector $\underline{u}_{h,m}$ at the last time step $t_m = T = 1$.

implicit Euler: $\|\underline{u}_{h,m}\|_{l_2}$

explicit Euler: $\|\underline{u}_{h,m}\|_{l_2}$

impl. trapezoidal: $\|\underline{u}_{h,m}\|_{l_2}$

Print some of the solutions (e.g. columns 1 and 3) to files and plot the results, eg. in Mathematica or Matlab.

When does explicit Euler give reasonable results? Do your observations comply with the corresponding theory?