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46 Show that for the iterates of the Richardson method and the method of steepest
descent (Gradientenverfahren),

xk ∈ x0 +Kk(A, r0)

holds. Argue the same for the iterates of the Conjugate Gradient method, where
you may use results from Lemma 1.63.

In the next three examples, we consider the MDS (multilevel diagonal scaling) precondi-
tioner. Let {T`}L`=1 be nested meshes of the interval (0, 1). We start with a fixed mesh
T1 (with a few elements) and construct the other meshes by uniform refinement as shown
below.

coarsest mesh

finest mesh

For each ` = 1, . . . , L we define

V` := {v ∈ H1(0, 1) : v|T ∈ P1 ∀T ∈ T`} = span{ϕ`,i}n`
i=0

with the nodal basis functions {ϕ`,i}n`
i=0 and n` being the number of elements of T`.

47 Consider two consecutive meshes T` and T`+1 and the corresponding finite element
spaces V` ⊂ V`+1. Recall that for every w` ∈ V` there exist a vector w` = [w`,i]

n`
i=0

such that

w`(x) =

n∑̀
i=0

w`,i ϕ`,i(x).

Let w` ∈ V` be fixed. Since w` ∈ V`+1 as well, there exists a vector w`+1 = [w`+1,i]
n`+1

i=0

such that

w`(x) =

n`+1∑
i=0

w`+1,i ϕ`+1,i(x).

Write the coefficients w`+1,i in terms of w`,i. Find a matrix I`+1
` ∈ Rn`+1+1×n`+1 such

that
w`+1 = I`+1

` w` .

48 Let R ∈ V ∗ denote a bounded linear functional. Let ` < L be fixed and define the
residual vector r`+1 = [r`+1,i]

n`+1

i=0 by r`+1,i := 〈R, ϕ`+1,i〉. Then,

〈R, v`+1〉 =

n`+1∑
i=0

r`+1,i v`+1,i = (r`+1, v`+1)`2

for all v`+1 ∈ V`+1 with basis representation v`+1.
As above, define r` = [r`,i]

n`
i=0 with r`,i := 〈R, ϕ`,i〉.

Write r` in terms of r`+1 such that 〈R, v`〉 = (r`, v`)`2 for all v` ∈ V` with basis
representation v`. Show that

r` = I``+1 r`+1 with I``+1 = (I`+1
` )>.
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49 Consider the H1(0, 1)-coercive bilinear form a(u, v) =
∫ 1

0
u′v′+uv dx, and let V`, ` =

1, ..., L be defined as above. (This corresponds to the classical problem −u′′+u = f
in (0, 1) with −u′(0) = g0 and u′(1) = g1.)

Let the subspace decomposition VL =
∑L

`=1

∑n`

i=0 V`,i with V`,i = span{ϕ`,i} be
given.

The MDS preconditioner C−1L is defined via

C−1L rL = wL ,

where the vector rL corresponds to the functional R (as above) and wL to the
function wL, where

wL =
L∑

`=1

w` =
L∑

`=1

n∑̀
i=0

w`,i ϕ`,i ,

with w`,i such that
a(w`,i ϕ`,i, ϕ`,i) = 〈R,ϕ`,i〉 .

Write C−1L explicitly in terms of the matrices I`+1
` and D` = diag(K`), where K` is

the stiffness matrix on level `, i.e. [K`]i,j = a(ϕ`,j, ϕ`,i).

Programming.

50 Define a C++class JacobiPreconditioner which implements the Jacobi Precondi-
tioner Ch = Dh = diag(Kh). Implement a member function which solves the linear
system Chwh = rh for Ch = Dh (diagonal) and for a given vector rh. The class
declaration should look similar to this:

class JacobiPreconditioner{

public:

JacobiPreconditioner (const SMatrix& mat);

~JacobiPreconditioner ();

Solve(const Vector& r, Vector& s); //solves C.s=r

(...)

private:

Vector diag_;

(...)

};

51 Now solve the boundary value problem of example 45 with the preconditioned
Conjugate Gradient Method with a Jacobi preconditioner (adapt pcg.hh from the
webpage). Report the number of iterations for 2k elements, k = 4, . . . , 10. Compare

to the number of iterations needed by CG (Exercise 45 ).
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