40 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Show that for $M_{\tau} = I - \tau A, \tau \in \mathbb{R}$:

$$\|M_{\tau}\|_{\ell_2} = \max_{\lambda \in \sigma(A)} |1 - \tau \lambda| = q(\tau)$$

with $q(\tau) = \max\left(|1 - \tau \lambda_{\max}(A)|, |1 - \tau \lambda_{\min}(A)|\right).$

Now, assume additionally that $A \in \mathbb{R}^{n \times n}$ is indefinite with at least one positive and one negative eigenvalue. For this setup, use the previous result to show

$$\|M_{\tau}\|_{\ell_2} > 1 \qquad \forall \tau \neq 0.$$

41 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $\lambda_{-} < 0$ and $\lambda_{+} > 0$ be two eigenvalues with their corresponding eigenvectors e_{-} and e_{+} . Show that there is *no* parameter $\tau \in \mathbb{R}$ such that Richardson's method

$$x_{k+1} = x_k + \tau(b - A x_k)$$

converges for the initial vector $x_0 = x + e_- + e_+$, where $x = A^{-1}b$.

42 Let A be self-adjoint and positive definite with respect to (\cdot, \cdot) , and $b \in \mathbb{R}^n$. Recall the energy functional

$$J_A(y) := \frac{1}{2}(Ay, y) - (b, y)$$

Let $x_k \in \mathbb{R}^n$ be a given approximation and $p_k \in \mathbb{R}^n$ a given search direction. Compute

$$\alpha_k = \operatorname*{argmin}_{\alpha \in \mathbb{R}} J_A(x_k + \alpha \, p_k),$$

in terms of p_k , r_k , and A (where $r_k := b - A x_k$).

- 43 (a) Consider the search direction $p_k = r_k + \beta_{k-1}p_{k-1}$ of the Conjugate Gradient method. Compute β_{k-1} such that $(p_{k-1}, p_k)_A = 0$.
 - (b) For α_k defined as in the lecture (or as in Example 42 in the Tutorial), show that $(r_k, p_{k-1}) = 0$.

44 Show Lemma 1.56 (c) and (d), i.e.

$$\forall j = 0, \dots, k - 1: (r_k, p_j) = 0 \text{ and } (p_k, p_j)_A = 0$$

Hint: Use one Induction over k to prove both statements. Additionally, you may use that $\forall j < k : (r_{k+1}, Ap_j) = 0$ since $\forall j < k : Ap_j \in A(\mathcal{K}_k(A, r_0)) \subset \mathcal{K}_{k+1}(A, r_0)$

Programming.

[45] Solve a boundary value problem of your choice with the Conjugate Gradient method. Use cg.hh from the webpage and perform the necessary modifications.

Report the number of iterations for 2^k elements, k = 4, ..., 10. Compare to the number of iterations needed by Richardson's method (for the mesh-sizes treated also in Exercise 39) and the theoretical results from the lecture.