Numerical Methods for Partial Differential Equations WS 2012 / 13
Tutorial 6 Monday, November 12, 2012, 10.15-11.45, S2 054

Prove an improved version of Céa‘s Lemma for the symmetric case:

Let the assumptions of Céa’s Lemma (see lecture) hold. Additionally, let b(,-) be

symmetric. Then
Ha2 .
u—u <,/— inf |jlu—w . 6.1
I h”W_“Ml S| nllw (6.1)

Hint: Work in the energy norm ||v||g := \/b(v,v) and apply Céa. Then estimate
the norms in order to get 6.1.

Construct the efficient Gauss algorithm which exploits the tridiagonal matrix struc-
ture of the n x n system of linear equations Ax = b, where

dl C1 0
ap dy ¢

= = b
A a dy . and b '2

Step 1: Eliminate lower off-diagonal:

Show that Az = b is equivalent to a system Az = 5, where A and b have the

structure
1 ¢ 0 -

For all ¢, starting at ¢ = 1, provide the expressions ¢, b; in terms of a;, b;, ¢; and the
previously computed coefficients ¢;_1, b;_1, as appropriate.

Step 2: Solve the system Ax = b:
For all 4, now starting at ¢ = n, determine z; from b;, & and Xii1, as appropriate.

Derive the variational formulation of the d-dimensional model problem: € C R4
Lipschitz domain, I' = 92 = I'p U 'y, find u : 2 — R such that

—div(A(z) Vu(z)) + b(z) - Vu(z) + c(z) u(z) = f(x) Vo e Q,
u(z) = gp(x) Ve elp,
(A(z) Vu(z)) - ii(z) = gn(z) Ve eI'y,

where the scalar functions f, gp, gy, and the coefficients A(z) € R4, g(ac) € R,
and c(x) € R are given.

Consider the variational formulation of the d-dimensional model problem. Assume
that measy_1(I'p) > 0, that f € L?(Q), gv € L*(Ty), and gp € HY*(I'p), which
means that gp € L*(I'p) and there exists g € H'(Q) : vpg = gp. Show that a(-,-)
and (F,-) are H'(Q2)-bounded and that a(-,-) is Vp-coercive.

Programming.

Solve the system Kjw, = f, in optimal complexity using Gaussian elimination
exploiting the tridiagonal structure.

Hint: See exercise !

Use this algorithm to solve the boundary value problem

—u"(z) = f(v),
u(0) = go,
u'(l) = g1,

with f(z) =3x+1, go = 3, and g = —0.5.

Try to plot your solution. If you are unsure how to do this, feel inspired by the
instructions on the webpage.

Write a function

double ApproxL2Error (const Mesh& mesh, const Vector& uh,
RealFunction sol);

which approximates the error || — up||r2(0,1) (Where uh=w, and sol=u) using the

midpoint rule on each element:

oo

T
le—unlfioony = - [lu—uwlPde ~ 3 hufuleg) = w ()P
k=1

k=1 Tk

where 7} = %(xk_l + x1) is the midpoint of element T} and hy = xp — zx_1.

