28 Prove an improved version of Céa's Lemma for the symmetric case:

Let the assumptions of Céa's Lemma (see lecture) hold. Additionally, let $b(\cdot, \cdot)$ be symmetric. Then

$$\|u - u_h\|_W \le \sqrt{\frac{\mu_2}{\mu_1}} \inf_{w_h \in W_h} \|u - w_h\|_W .$$
(6.1)

Hint: Work in the *energy norm* $||v||_B := \sqrt{b(v, v)}$ and apply Céa. Then estimate the norms in order to get 6.1.

29 Construct the efficient Gauss algorithm which exploits the tridiagonal matrix structure of the $n \times n$ system of linear equations Ax = b, where

$$A = \begin{pmatrix} d_1 & c_1 & & 0 \\ a_1 & d_2 & c_2 & \\ & a_2 & d_3 & \ddots \\ 0 & & \ddots & \ddots \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$$

Step 1: Eliminate lower off-diagonal:

Show that Ax = b is equivalent to a system $\tilde{A}x = \tilde{b}$, where \tilde{A} and \tilde{b} have the structure

$$\tilde{A} = \begin{pmatrix} 1 & c_1 & & 0 \\ & 1 & \tilde{c}_2 & \\ & & 1 & \ddots \\ & & & \ddots \end{pmatrix} \quad \text{and} \quad \tilde{b} = \begin{pmatrix} \tilde{b}_1 \\ \tilde{b}_2 \\ \vdots \end{pmatrix}$$

For all *i*, starting at i = 1, provide the expressions \tilde{c}_i, \tilde{b}_i in terms of a_i, b_i, c_i and the previously computed coefficients $\tilde{c}_{i-1}, \tilde{b}_{i-1}$, as appropriate.

Step 2: Solve the system $\tilde{A}x = \tilde{b}$:

For all *i*, now starting at i = n, determine x_i from \tilde{b}_i, \tilde{c}_i and x_{i+1} , as appropriate.

30 Derive the variational formulation of the *d*-dimensional model problem: $\Omega \subset \mathbb{R}^d$ Lipschitz domain, $\Gamma = \partial \Omega = \Gamma_D \cup \Gamma_N$, find $u : \overline{\Omega} \to \mathbb{R}$ such that

$$-\operatorname{div}(A(x) \nabla u(x)) + \vec{b}(x) \cdot \nabla u(x) + c(x) u(x) = f(x) \qquad \forall x \in \Omega,$$
$$u(x) = g_D(x) \qquad \forall x \in \Gamma_D,$$
$$(A(x) \nabla u(x)) \cdot \vec{n}(x) = g_N(x) \qquad \forall x \in \Gamma_N,$$

where the scalar functions f, g_D, g_N , and the coefficients $A(x) \in \mathbb{R}^{d \times d}, \vec{b}(x) \in \mathbb{R}^d$, and $c(x) \in \mathbb{R}$ are given.

31 Consider the variational formulation of the *d*-dimensional model problem. Assume that $\operatorname{meas}_{d-1}(\Gamma_D) > 0$, that $f \in L^2(\Omega)$, $g_N \in L^2(\Gamma_N)$, and $g_D \in H^{1/2}(\Gamma_D)$, which means that $g_D \in L^2(\Gamma_D)$ and there exists $g \in H^1(\Omega) : \gamma_D g = g_D$. Show that $a(\cdot, \cdot)$ and $\langle F, \cdot \rangle$ are $H^1(\Omega)$ -bounded and that $a(\cdot, \cdot)$ is V_0 -coercive.

Programming.

32 Solve the system $K_h \underline{u}_h = \underline{f}_h$ in optimal complexity using Gaussian elimination exploiting the tridiagonal structure. Hint: See exercise 29!

Use this algorithm to solve the boundary value problem

$$-u''(x) = f(x),$$

$$u(0) = g_0,$$

$$u'(1) = g_1,$$

with f(x) = 3x + 1, $g_0 = 3$, and $g_1 = -0.5$.

Try to plot your solution. If you are unsure how to do this, feel inspired by the instructions on the webpage.

33 Write a function

which approximates the error $||u - u_h||_{L^2(0,1)}$ (where $uh = \underline{u}_h$ and sol = u) using the *midpoint rule* on each element:

$$\|u-u_h\|_{L^2(0,1)}^2 = \sum_{k=1}^{n_h} \int_{T_k} |u-u_h|^2 dx \approx \sum_{k=1}^{n_h} h_k |u(x_k^*)-u_h(x_k^*)|^2,$$

where $x_k^* := \frac{1}{2}(x_{k-1} + x_k)$ is the midpoint of element T_k and $h_k = x_k - x_{k-1}$.