
Numerical Methods for Partial Differential Equations WS 2012 / 13
Tutorial 5 Monday, November 5, 2012, 10.15–11.45, S2 054

22 Let Th be a mesh of (0, 1) with maximal mesh size h, let Vh be the corresponding
finite element space (using the Courant element), and let Ih : H1(0, 1) → Vh the
corresponding interpolation operator. Show the interpolation error estimate

|v − Ihv|H1(0,1) ≤ C1 h ‖v′′‖L2(0,1)∀v ∈ C2(0, 1).

Hint: Analogous to the proof of the L2-estimate in the lecture: split into element
terms, transform to the reference element, estimate the interpolation error on the
reference element, transform back.

23 Let Vg = V0 := {v ∈ H1(0, 1) : v(0) = 0} and let a : V0 × V0 → R and F ∈ V ∗0 fulfill
the assumptions of the Lax-Milgram theorem. Let Vh be the Courant FE space as

in Exercise 22 and V0h = Vh ∩ V0. Furthermore, let u ∈ V0 be the solution of the
variational formulation and uh ∈ V0h the Galerkin-FE solution. Show that for a
sequence of meshes {Th} where h→ 0, we have

‖u− uh‖H1(0,1) → 0,

even if u 6∈ H2(0, 1).

Hint: Use Céa’s lemma and estimate (u− ũ) + (ũ− Ihũ) for ũ ∈ H2(0, 1). Use
the fact that H2 is dense in H1 and make the two terms sufficiently small.

Programming.
In Tutorial 4 we computed the element stiffness matrices and load vectors. Here we will
first assemble these to form the “full” stiffness matrix and load vector for a pure Neumann
problem, which are then modified to implement other kinds of boundary conditions. You
can again use the vector data type provided on the homepage.

24 Write a function

void AssembleStiffnessMatrix (const Mesh& mesh, SMatrix& mat);

that assembles the (nh + 1)× (nh + 1) stiffness matrix mat=Kh (see Exercise 20)
for a given mesh mesh=Th of (0, 1).

Test your function by constructing the stiffness matrix for at least an equidistant
mesh of 20 elements and printing the result to the screen.

Hint: Set Kh = 0, then loop over all elements. For each element, call
ElementStiffnessMatrix and add the entries of K

(k)
h at the correct positions of

Kh.

25 Write a function

void AssembleLoadVector (RealFunction f, const Mesh& mesh,

Vector& vec);

1

that assembles the load vector vec=f
h

for the given function f=f ∈ C[0, 1] and the
given mesh.

Test your function by constructing the load vector for at least an equidistant mesh
of 20 elements for the function f(x) = 3x+ 1 and printing the result to the screen.

Hint: Set f
h

= 0, then loop over all elements. For each element, call
ElementLoadVector and add the entries of the element load vector to the right
places.

26 Write a function

void ImplementRobinBC (int i, double g, double alpha,

SMatrix& mat, Vector& vec);

to implement the Robin boundary condition

−u′(0) + αu(0) = g1 if i = 0,

u′(1) + αu(1) = g1 if i = nh ,

for given values g=g1, alpha=α at the boundary node xi identified by the index

i=i ∈ {0, nh}. Compare with Exercise 02 and 09 .

ImplementRobinBC must update (modify) the stiffness matrix mat and the load
vector vec which were previously computed by AssembleStiffnessMatrix and
AssembleLoadVector.

Test your function on the system constructed in exercises 24 and 25 .

27 Write a function

void ImplementDirichletBC (int i, double g, SMatrix& mat,

Vector& vec);

which implements the Dirichlet boundary condition

u(xi) = g0

for a given value g=g at the boundary node xi identified by the index i=i. The
function ImplementDirichletBC must update the stiffness matrix mat and the load
vector vec, after having applied AssembleStiffnessMatrix, AssembleLoadVector,
and ImplementRobinBC.

Instead of deleting rows or columns from the matrix, you should stay with the
(nh + 1)× (nh + 1) matrix using the following “decoupling” technique:
For i = 0, the resulting system should look like

K00 0 . . . 0
0 K11 . . . K1nh

...
...

. . .
...

0 Knh1 . . . Knhnh




u0
u1
...
unh

 =


K00 g0

f1 −K10 g0
...

fnh
−Knh0 g0

 ,

where [Kij]
nh
i,j=0 and [fi]

nh
i=0 are the “full” stiffness matrix and load vector before the

call.

Test your function on the system constructed in exercises 24 and 25 .

2

