
Numerical Methods for Partial Differential Equations WS 2012 / 13
Tutorial 4 Monday, October 29, 2012, 10.15–11.45, S2 054

16 Show that
a(vh, wh) = (Kh vh, wh)`2

where Kh is the stiffness matrix (defined according to the lecture), vh, wh ∈ V0h
(arbitrary), vh, wh are the corresponding vectors according to the Ritz isomorphism,
and (·, ·)`2 is the Euclidean inner product. Show also that for the load vector f

h
,

〈F̂ , vh〉 = (f
h
, vh)`2 .

17 Construct quadratic basis functions ϕ̂0, ϕ̂1 and ϕ̂2 ∈ P2 on the reference element

T̂ = [0, 1] such that for ξ0 = 0, ξ1 = 0.5, ξ2 = 1,

ϕ̂i(ξj) = δi,j.

Then, compute the element stiffness matrix on T̂ for this basis,

K̂ =

(∫
T̂

ϕ̂′j(ξ) ϕ̂
′
i(ξ) dξ

)2

i,j=0

.

Programming.
In C++ (or C) only! (no Fortran, no Java, no matlab)
You will need a C/C++ compiler and an editor, or an integrated development environment
(like DevC++, eclipse, Visual Studio, ...).

You might want to define the following data types:

typedef double Vec2[2];

typedef double Mat22[2][2];

define a vector type Vec2 in R2 and a 2× 2 matrix type Mat22, and

typedef double (*RealFunction)(double x);

defines a function type RealFunction.
For storing bigger vectors, you are recommended to use the vector class provided on

the homepage.

18 Design a data type Mesh to store the mesh information that you need later on to
assemble the stiffness matrix. Make sure that your data type allows

– initializing (e.g. with an equidistant mesh with a certain number of nodes)

– asking for the number of nodes

– asking for the “coordinate” of an arbitrary node

Implement a method void TestMesh() which creates a mesh of [0, 1], performs
different queries on it and prints the result to the screen.

Hint: Use class in C++or struct in C.

1

19 Design an efficient data type SMatrix to store the stiffness matrix Kh later on,
which exploits the fact that Kh is tridiagonal. Make sure that your data type allows

– initializing (with a certain number of rows=columns and zero entries)

– asking for any entry in the diagonal and the two off-diagonals

– adding a value to a certain entry

Implement a method void TestSMatrix() which creates a tridiagonal matrix, per-
forms different queries on it and prints the results to the screen.

Hint: Use class in C++or struct in C.

20 Write a function

void ElementStiffnessMatrix (double xa, double xb, Mat22& elMat);

which for given nodes xa=xk−1 and xb=xk returns the element stiffness matrix

elMat=K
(k)
h of the element Tk, i.e.

K
(k)
h =

(∫
Tk

(ϕ′k−1(x))2dx
∫
Tk
ϕ′k−1(x)ϕ′k(x)dx∫

Tk
ϕ′k(x)ϕ′k−1(x)dx

∫
Tk

(ϕ′k(x))2dx

)
=

1

hk

(
1 −1
−1 1

)
.

Implement a method void TestElementMatrix() which creates an element stiff-
ness matrix and prints the result to the screen.

21 Write a function

void ElementLoadVector (RealFunction f, double xa, double xb,

Vec2& elVec);

which for a given function f=f ∈ C[0, 1] and the nodes xa=xk−1 and xb=xk returns

the approximated 2-dimensional element load vector elVec≈ f
(k)
h on the element

Tk,

f
(k)
h =

(∫
Tk
f(x)ϕk−1(x)dx∫

Tk
f(x)ϕk(x)dx

)
.

Use the trapezoidal rule to approximate the involved integrals (see lecture).

Implement a method void TestElementVector() which creates an element load
vector for the function f(x) = 3x+ 1 and prints the result to the screen.

2

