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04 Consider the piecewise constant coefficient function a ∈ L∞(0, 1),

a(x) =

{
a1 for x ∈

[
0, 1

2

]
,

a2 for x ∈
(
1
2
, 1
]
,

with positive constants a1 6= a2. Derive a variational formulation for the boundary
value problem

−a(x)u′′(x) = f(x) ∀x ∈ (0, 1) \ {1
2
} ,

u(0) = g1 , u(1) = g2 ,

together with the transmission conditions

u(1
2

−
) = u(1

2

+
) , a1 u

′(1
2

−
) = a2 u

′(1
2

+
) ,

where w(1
2

−
) and w(1

2

+
) denote the left sided and right sided limit of a function w,

respectively.
Hint: Integration by parts is only valid on subintervals!

05 Let the sequence (uk)k∈N of functions be defined by

uk(x) =


2x for x ∈

[
0, 1

2
− 1

2k

]
,

1− 1
2k
− 2k

(
x− 1

2

)2
for x ∈

(
1
2
− 1

2k
, 1

2
+ 1

2k

)
,

2(1− x) for x ∈
[
1
2

+ 1
2k
, 1
]
.

Show that uk ∈ C1[0, 1]. Let u be defined by

u(x) =

{
2x for x ∈

[
0, 1

2

]
,

2(1− x) for x ∈
(
1
2
, 1
]
.

Find out if u, uk ∈ H1(0, 1) or not and justify your answer. Calculate ‖uk−u‖H1(0, 1)

(maybe with a little help from Mathematica/Maple) or find a suitable bound for it
in order to show that

lim
k→∞
‖uk − u‖H1(0, 1) = 0 .

Use these results to show that (uk)k∈N is a Cauchy sequence in C1[0, 1] with respect
to the H1-norm, but that there exists no limit in C1[0, 1].

06 Show Poincaré’s inequality : There exists a constant CP > 0 such that

‖v‖L2(0, 1) ≤ CP

{
|v|2H1(0, 1) +

(∫ 1

0

v(x) dx
)2}1/2

∀v ∈ H1(0, 1) .

Hint: Integrate the identity

v(y) = v(x) +

∫ y

x

v′(z) dz

over the whole interval (0, 1) with respect to x. The rest of the proof is then similar
to the one of Friedrichs’ inequality (see your lecture notes).
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07 Derive the variational formulation

find u ∈ Vg : a(u, v) = 〈F, v〉 ∀v ∈ V0 (2.1)

of the pure Neumann boundary value problem

−u′′(x) = f(x) for x ∈ (0, 1) ,

−u′(0) = g0 ,

u′(1) = g1 ,

and show the following statements:

(a) If (2.1) has a solution, then

〈F, c〉 = 0, ∀c ∈ R . (2.2)

(b) If u is a solution of (2.1), then, for any constant c ∈ R, û := u + c is also a
solution.

(c) If we choose c = −
∫ 1

0
u(x) dx, then

û ∈ V̂ =
{
v ∈ H1(0, 1) :

∫ 1

0

v(x) dx = 0
}

(d) If û ∈ V̂ solves the variational problem

a(û, v̂) = 〈F, v̂〉 ∀v ∈ V̂ ,

and if the condition (2.2) holds, then û solves also (2.1).
Hint: Each test function v ∈ H1(0, 1) can be written as v(x) = v̂(x) + v with

v =
∫ 1

0
v(x) dx and v̂ ∈ V̂ .

08 The pure Neumann problem (continuation of exercise 06 ).
Show that the weak formulation of the pure Neumann problem has a solution if
and only if ∀c ∈ R : 〈F, c〉 = 0, and that the solution is unique up to an additive
constant.
Hint: Use Poincaré’s inequality to show the V̂ -coercivity of a(·, ·).

09 A Robin problem. Consider the variational formulation of

−u′′(x) = f(x) for x ∈ (0, 1),

−u′(0) = g0 − α0 u(0)

u′(1) = g1

with appropriate choices of V0 and Vg. Show that if α0 > 0, then the corresponding
bilinear form is V0-coercive.
Hint: convince yourself that 1

2
‖v‖2L2(0,1) ≤ ‖v − v(0)‖2L2(0,1) + |v(0)|2 and use

Friedrichs’ inequality to bound the first summand.
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