Numerical Methods for Partial Differential Equations WS 2012 / 13
Bonus: Multilevel diagonal scaling

The following instructions can serve as a guideline in case you would like to implement a
multilevel diagonal scaling preconditioner yourself. The examples are not a regular part
of the tutorial, but if you get results you are welcome to present them in the lesson (and
gain some bonus credits for them)

Write a function

void RefineUniform (const Mesh& coarseMesh, Mesh& fineMesh);

that computes the refined mesh 7,,=fineMesh from a given mesh 7,=coarseMesh
as shown above.

(a) Write a function

void Restrict (const Vector& fineRes, Vector& coarseRes);

that computes the coarse residual coarseRes=r, = I/ 1, from the fine
residual fineRes=r, ;.

Hint: Use the entries of I/, from above, but set 7,9 = 0 (due to the incorpo-
rated Dirichlet condition).

(b) Write a function
void Prolongate (const Vector& coarseVec, Vector& fineVec);

that computes fineVec=v, , = I;*'y, from coarseVec=uv,.
Hint: Use the entries of [f“ from above, but set v,9 = 0 (due to the incorpo-
rated Dirichlet condition).

Hint: Don’t build/store the matrices [f“, If 41 but implement their multiplication
to a vector.

Consider mds . hh from the website and implement the class routines of MDSPrecon-
ditioner. Some comments/hints:

The field jacobi_ stores the diagonals of the stiffness matrix at different levels. The
routine InitDiagonal fills an element of jacobi_ with diagonal entries of the given
matrix.

The recursive routine ApplyCL should do the following:

apply the Jacobi preconditioner at the current level to get a correction w from r
(solve the diagonal equation system)

if level > 0O
restrict r to a coarse residual rc
call ApplyCL(level-1, rc, wc) (recursively) to get a coarse correction wc
prolongate wc to a fine correction wf
add wf tow

If you want, you can use a vector<JacobiPreconditioner> for jacobi_ and reuse
your Jacobi class from the Tutorial 9. However you might have to adapt it such that
it has a default constructor (with no arguments) and an Initialize function which
can be called in InitDiagonal.

@ Solve a boundary value problem of your choice with the MDS-preconditioned PCG
method, reusing your PCG code from Tutorial 9. Start with a simple mesh of e.g.
two elements and perform uniform refinement. The core part of your main program
could be as follows:

create mesh with two elements
create K and f from mesh (with BC!)
call mds.InitDiagonal (0, K)
form=1,..., L —1
call mesh.RefineUniform()
create K and £ from mesh (with BC!)
call mds.InitDiagonal (m, K)
end for
call PCG

Report the number of PCG iterations for L levels, where L = 0,1,...,10, and
compare with results of other methods.

