
Numerical Methods for Partial Differential Equations WS 2012 / 13
Bonus: Multilevel diagonal scaling

The following instructions can serve as a guideline in case you would like to implement a
multilevel diagonal scaling preconditioner yourself. The examples are not a regular part
of the tutorial, but if you get results you are welcome to present them in the lesson (and
gain some bonus credits for them)

A Write a function

void RefineUniform (const Mesh& coarseMesh, Mesh& fineMesh);

that computes the refined mesh T`+1=fineMesh from a given mesh T`=coarseMesh

as shown above.

B (a) Write a function

void Restrict (const Vector& fineRes, Vector& coarseRes);

that computes the coarse residual coarseRes=r` = I``+1 r`+1 from the fine
residual fineRes=r`+1.
Hint: Use the entries of I``+1 from above, but set r`,0 = 0 (due to the incorpo-
rated Dirichlet condition).

(b) Write a function

void Prolongate (const Vector& coarseVec, Vector& fineVec);

that computes fineVec=v`+1 = I`+1
` v` from coarseVec=v`.

Hint: Use the entries of I`+1
` from above, but set v`,0 = 0 (due to the incorpo-

rated Dirichlet condition).

Hint: Don’t build/store the matrices I`+1
` , I``+1 but implement their multiplication

to a vector.

C Consider mds.hh from the website and implement the class routines of MDSPrecon-
ditioner. Some comments/hints:

The field jacobi stores the diagonals of the stiffness matrix at different levels. The
routine InitDiagonal fills an element of jacobi with diagonal entries of the given
matrix.

The recursive routine ApplyCL should do the following:
apply the Jacobi preconditioner at the current level to get a correction w from r

(solve the diagonal equation system)
if level > 0

restrict r to a coarse residual rc
call ApplyCL(level-1, rc, wc) (recursively) to get a coarse correction wc

prolongate wc to a fine correction wf

add wf to w

If you want, you can use a vector<JacobiPreconditioner> for jacobi and reuse
your Jacobi class from the Tutorial 9. However you might have to adapt it such that
it has a default constructor (with no arguments) and an Initialize function which
can be called in InitDiagonal.

1



D Solve a boundary value problem of your choice with the MDS-preconditioned PCG
method, reusing your PCG code from Tutorial 9. Start with a simple mesh of e.g.
two elements and perform uniform refinement. The core part of your main program
could be as follows:

create mesh with two elements
create K and f from mesh (with BC!)
call mds.InitDiagonal (0, K)

for m=1, . . . , L− 1
call mesh.RefineUniform()
create K and f from mesh (with BC!)
call mds.InitDiagonal (m, K)

end for
call PCG

Report the number of PCG iterations for L levels, where L = 0, 1, . . . , 10, and
compare with results of other methods.

2


