Let us consider the following theorem from the lecture:

THEOREM 10.1 The identity

$$||E||^{2} = ||(I - T_{J})(I - T_{J-1})\cdots(I - T_{1})||^{2} = \frac{c_{0}}{1 + c_{0}}$$

holds, where $\overline{T}_k = T_k^* + T_k - T_k^* T_k$ and

$$c_{0} = \sup_{\|v\|=1} \inf_{\sum_{k} v_{k}=v} \sum_{k=1}^{J} \left(T_{k} \overline{T}_{k}^{-1} T_{k}^{*} w_{k}, w_{k} \right)$$

with $w_k = \sum_{j=k}^J v_j - T_k^{-1} v_k$ and $\|\cdot\| = \|\cdot\|_a$ is a norm induced by $(\cdot, \cdot) = (\cdot, \cdot)_a$ assuming that $I - T_k$ is non expansive, i.e., $\|I - T_k\| \le 1$.

23 Prove that if Π_k denotes the elliptic projection on V_k , i.e.,

$$\Pi_k \colon V \to V_k,$$
$$v \mapsto \Pi_k v,$$

defined via the relation

$$a(\Pi_k v, w_k) = a(v, w_k) \quad \forall w_k \in V_k,$$

we have that

$$c_0 \le \sup_{\|v\|=1} \sum_{k=1}^{J} \left((\overline{T}_k^{-1} - I) (\Pi_k - \Pi_{k-1}) v, (\Pi_k - \Pi_{k-1}) v \right).$$