01 We have the following weak formulation:

Given $f \in L_2(\Omega)$ find $u \in \mathcal{V} := \{v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D\}$, satisfying

$$\mathcal{A}(u,v) = \mathcal{L}(v) \quad \forall v \in \mathcal{V}, \tag{1.1}$$

where Γ_D denotes the Dirichlet boundary and

$$egin{aligned} \mathcal{A}(u,v) &:= \int_{\Omega} oldsymbol{a}(oldsymbol{x})
abla u(oldsymbol{x})
abla u(oldsymbol{x}) \cdot
abla v(oldsymbol{x}) \, doldsymbol{x}, \ \mathcal{L}(v) &:= \int_{\Omega} f(oldsymbol{x}) \, v(oldsymbol{x}) \, doldsymbol{x}, \end{aligned}$$

where the coefficient matrix a(x) is assumed to be symmetric positive definite and uniformly bounded in Ω .

Prove that this weak formulation is equivalent to the following abstract minimization problem: Find $u \in \mathcal{V}$ such that

$$\begin{split} \mathcal{F}(u) &= \min_{v \in \mathcal{V}} \mathcal{F}(v), \\ \mathcal{F}(v) &:= \frac{1}{2} \mathcal{A}(v, v) - \mathcal{L}(v). \end{split}$$

Let us assume Ω is a polygonal domain and \mathcal{T}_h is a triangulation of Ω with mesh size $h := \max_{T \in \mathcal{T}_h} h_T$ and the mesh is assumed to be quasi-uniform, i.e., for all elements $T \in \mathcal{T}_h$ the conditions $h_T \geq \delta_1 h$ and $\frac{\rho_T}{h_T} \geq \delta_2$ are satisfied. Let $\mathcal{V}_h \subset \mathcal{V}$ be a finite-dimensional subspace of \mathcal{V} with a basis $\Phi = \{\phi_1, \phi_2, ..., \phi_N\}$. We consider the following finite-dimensional problem corresponding to (1.1):

Find $u_h \in \mathcal{V}_h$ such that

$$\mathcal{A}_h(u_h, v_h) = \mathcal{L}(v_h) \quad \forall v_h \in \mathcal{V}_h, \tag{1.2}$$

where

$$\mathcal{A}_h(u_h, v_h) = \mathcal{A}(u_h, v_h) := \int_{\Omega} \boldsymbol{a}(\boldsymbol{x}) \nabla u_h(\boldsymbol{x}) \cdot \nabla v_h(\boldsymbol{x}) d\boldsymbol{x},$$

 $\mathcal{L}_h(v_h) = \mathcal{L}(v_h) := \int_{\Omega} f(\boldsymbol{x}) v_h(\boldsymbol{x}) d\boldsymbol{x}.$

Prove that for all $v_h = \sum_{i=1}^N v_i \phi_i \in \mathcal{V}_h$ with $\mathbf{v} = (v_i) \in \mathbb{R}^N$ we have that

(i)
$$c_1 h^2 \|\mathbf{v}\|^2 \le \|v_h\|_{L^2(\Omega)}^2 \le c_2 h^2 \|\mathbf{v}\|^2$$

(ii)
$$\mathcal{A}_h(v_h, v_h) \le c_3 h^{-2} ||v_h||_{L^2(\Omega)}^2$$

where the constants c_1, c_2, c_3 only depend on δ_1 and δ_2 .