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1 Variational formulation of multi-dimensional ellip-

tic Boundary Value Problems (BVP)

1.1 Scalar Second-order Elliptic BVP

© In the lecture (Section 1.2.1) we discussed the BVP (a classical formulation)

Search u ∈ X := C2(Ω) ∩ C1(Ω ∪ Γ2 ∪ Γ3) ∩ C(Ω ∪ Γ1) :

−
d∑

ı,=1

∂
∂xi

(aı(x) ∂u
∂x

) +
d∑
ı=1

bi(x) ∂u
∂xi

+ c(x)u(x) = f(x), x ∈ Ω

+BC: • u(x) = g1(x), x ∈ Γ1

• ∂u
∂N

:=
d∑

ı,=1

aı(x)∂u(x)
∂x

ni(x) = g2(x), x ∈ Γ2

• ∂u
∂N

+ α(x)u(x) = g3(x)︸ ︷︷ ︸
α(x)uA(x)

, x ∈ Γ3

(1.1)

and derived the variational formulation

Search u ∈ Vg : a(u, v) =< F, v > ∀v ∈ V0

with

a(u, v) :=
∫
Ω

(
d∑

ı,=1

aı
∂u
∂x

∂v
∂xi

+
d∑
ı=1

bi
∂u
∂xi
v + cuv) dx+

∫
Γ3

αuv ds,

< F, v > :=
∫
Ω

fv dx+
∫
Γ2

g2v ds+
∫
Γ3

g3v ds

Vg := {v ∈ V = W 1
2 (Ω) : v = g1 on Γ1}

V0 := {v ∈ V : v = 0 on Γ1}

(1.2)
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under the assumptions

1) aı, bi, c ∈ L∞(Ω), α ∈ L∞(Γ3)

2) f ∈ L2(Ω), gi ∈ L2(Γi), i = 2, 3

3) g1 ∈ H
1
2 (Γ1), i.e., ∃g̃1 ∈ H1(Ω) : g̃1|Γ1 = g1.

4) Ω ⊂ Rd(bounded) : Γ = ∂Ω ∈ C0,1 (Lip boundary)

5) uniform ellipticity:

d∑
ı,=1

aı(x)ξı; ξ ≥ µ̄1|ξ|2 ∀ξ ∈ Rd

aı(x) = ai(x) ∀i,  = 1, d

∀ a.e. x ∈ Ω.



(1.3)

01 Formulate the classical assumptions on { aij, bi, c, α, f, gi,Ω resp. ∂Ω } for (1.1) !

02 Show that, for sufficiently smooth data, a the generalized solution u ∈ Vg∩X∩H2(Ω)
of the Boundary Value Problem (2) is also a classical solution, i.e. a solution of (1) !

(1)


Find u ∈ X = C2(Ω) ∩ C1(Ω ∪ Γ2 ∪ Γ3) ∩ C(Ω ∪ Γ1) :
−∆u(x) + u(x) = f(x), x ∈ Ω ⊂ Rd (bounded),
u(x) = g1(x), x ∈ Γ1,
∂u
∂n

(x) = g2(x), x ∈ Γ2,
∂u
∂n

(x) = α(x)(g3(x)− u(x)), x ∈ Γ3

?⇓⇑?

(2)


Find u ∈ Vg = {v ∈ V = H1(Ω) : v = g1 on Γ1} such that ∀v ∈ V0 :∫
Ω

(∇Tu∇v + uv) dx+

∫
Γ3

αuv ds

︸ ︷︷ ︸
=a(u,v)

=

∫
Ω

fv dx+

∫
Γ2

g2v ds+

∫
Γ3

αg3v ds

︸ ︷︷ ︸
=<F,v>

where V0 = {v ∈ V = H1(Ω) : v = 0 on Γ1}.

03 Show that the assumptions of the Lax-Milgram-Theorem are satisfied for the vari-
ational problem (1.2) under the assumptions (1.3) and the additional assumptions
bi = 0, c = 0, α(x) ≥ α = const > 0 ∀ a.e. x ∈ Γ3 with measd−1(Γi) > 0, i = 1, 2, 3 !

04 In addition to the assumption (1.3) let us assume that c(x) ≥ c = const > 0 ∀
a.e. x ∈ Ω,Γ2 = Γ3 = ∅, g1 = 0, and bi 6≡ 0. Provide conditions for the coefficients
bi(x) of the vector function b(x) = (b1(x), ..., bd(x))T such that the assumptions of
Lax-Milgram’s Theorem are fulfilled !

© Hint: For estimating the convection term

m∑
i=1

∫
Ω

bi(x)
∂u

∂xi
(x)v(x) dx =

∫
Ω

(b(x),∇u(x))v(x) dx,
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make use of the identity∫
Ω

(b,∇u)v dx = −
∫
Ω

(b,∇v)u dx−
∫
Ω

u v div(b)dx+

∫
Γ

(b, n)u v ds

that can easily be proved by partial integration.

05 Derive the variational formulation of the pure Neumann problem for the Poisson
equation

(∗)

 −∆u(x) = f(x), x ∈ Ω
∂u
∂~n

(x) = 0, x ∈ Γ = ∂Ω
,

and discuss the question of the existence and the uniqueness of a generalized
solution of (∗) !

© Hint:
Obviously, u(x)+c with an arbitrary constant c ∈ R1 solves (∗), if u is the solution of
the BVP (∗). There are the following ways to analyze the existence of a generalized
solution:

1) Set up the variational formulation in V = H1(Ω) and apply Fredholm-
Theory !

2) Set up the variational formulation im factor-space V = H1(Ω)|ker with ker=
{c : c ∈ R1} = R1 and apply Lax-Milgram-Theorem !

06∗ Derive the variational formulation of the Dirichlet problem for the Helmholtz
equation

(∗∗)

 −∆u(x)− ω2u = f(x), x ∈ Ω
u(x) = 0, x ∈ Γ = ∂Ω

.

Then discuss the problem of the existence and the uniqueness of the
generalized solution of (∗∗) ! Here ω2 is a given positive constant.
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