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1 Variational formulation of multi-dimensional ellip-
tic Boundary Value Problems (BVP)

1.1 Scalar Second-order Elliptic BVP
O In the lecture (Section 1.2.1) we discussed the BVP (a classical formulation)
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and derived the variational formulation
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under the assumptions
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Ay b5, ¢ € Loo(Q), 0 € Loo (')

f € Ly(),g; € La(T),i =2,3

g1 € H2(T')), i.e., 3§, € HY(Q) : gulr, = 1.

QC Rd(bounded) : T =00 € C% (Lip boundary)

uniform ellipticity:
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Formulate the classical assumptions on { a;j, b;, ¢, @, f, g;, 2 resp. 0 } for (1.1) !

Show that, for sufficiently smooth data, a the generalized solution u € V,NXNH?*(Q)
of the Boundary Value Problem (2) is also a classical solution, i.e. a solution of (1) !
(1) ( Findue X =C*Q)NCHQUT,UT3)NCQUTY):
—Au(z) +u(z) = f(z),z € 2 C R? (bounded),
u(z) = q1(z), © €Ty,
%(m) = go(x), x € Ty,
| 54(x) = a(x)(gs(x) —u(x)), © € I
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(2) FindueV,={veV=H'Q):v=g; on 1} such that Vv € Vj :
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where Vo ={v e V=H'(Q):v=0o0nT4}.

Show that the assumptions of the Lax-Milgram-Theorem are satisfied for the vari-
ational problem (1.2) under the assumptions (1.3) and the additional assumptions
b;=0,c=0,a(x) >a=const >0 VYa.e x€'3withmeas; ;(I';) >0,i=1,2,3!

In addition to the assumption (1.3) let us assume that ¢(z) > ¢ = const > 0 V
ae. € Q Ty =T3=10, g, =0, and b; # 0. Provide conditions for the coefficients
bi(z) of the vector function b(z) = (by(x), ..., ba(x))T such that the assumptions of
Lax-Milgram’s Theorem are fulfilled !

(O Hint: For estimating the convection term
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make use of the identity
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that can easily be proved by partial integration.

Derive the variational formulation of the pure Neumann problem for the Poisson
equation

—Au(z) = f(z),z € Q
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and discuss the question of the existence and the uniqueness of a generalized
solution of (x) !

(O Hint:
Obviously, u(x)+c with an arbitrary constant ¢ € R! solves (%), if u is the solution of
the BVP (x). There are the following ways to analyze the existence of a generalized
solution:

1) Set up the variational formulation in V = H'(Q2) and apply FREDHOLM-
Theory !

2) Set up the variational formulation im factor-space V' = H'(Q)l o, with ker=
{c:ce R'} = R! and apply LAX-MILGRAM-Theorem !

06 | Derive the variational formulation of the Dirichlet problem for the Helmholtz
equation

() —Au(x) —w?u= f(x),z € Q
u(z) =0,z €' =00 '

Then discuss the problem of the existence and the uniqueness of the
generalized solution of (xx) ! Here w? is a given positive constant.



